

MEMOCODE Hardware/Software Co-design Contest

Cryptosorter

Tallinn University of Technology team

documentation

Uljana Reinsalu

Sergei Devadze

Artur Jutman

Anton Chertov

Tallinn

March 2008

Note

Our solution is the minimum, what we could do. However, it represents a working

hardware/software design, so we would send it just for statistics.

Task definition

The objective of this contest is to sort an encrypted database of records as fast as possible.

Sorting an encrypted database requires that each record is decrypted, that a proper index for each

decrypted record is determined, and that each record is re-encrypted and stored at the proper

index.

The record length is 4 words. A record consists for four fields {f1, f2, f3, f4}. Each field is one

word long and encrypted. Encryption and decryption transforms the four fields of a record {f1,

f2, f3, f4} into four decrypted fields {g1, g2, g3, g4}. Each of g1, g2, g3, and g4 is one word

long.

Task analysis and methodology

The assignment can be clearly partitioned into two tasks: AES crypto algorithm and data sorting.

The most computation intensive is the AES encryption algorithm. Therefore it was decided to

implement it on hardware. Reuse of IP cores is a trend and state of the art system design,

therefore we decided to use existing open source IP core for AES 128 encryption. We assume

that this IP core is written well and optimized for fast computation, thus it is not the primary goal

for optimization.

The sorting is the opposite case. Since the speed of a particular sorting algorithm may depend on

the structure and statistical distribution of the input data, one or another specific algorithm will

be more efficient. Hence, we decided to implement the sorting algorithm in software so that it

can be easily and quickly modified when specially required. The importance of this decision was

proven by the fact that the contest’s test-bench was changed several days prior to the submission

deadline.

According to the task we have a lot of data which can only be fully stored in DRAM. For sorting

we need a lot of data exchange with memory and thus communication with memory should be

also optimized.

Since we currently have no high-level synthesis tools to use we had to restrict our design

methodology to the ideas described above.

General structure of implementation

We decided to store keys in the memory so that we can generate the keys once and get them

from memory by index. We decided to make it this way, because the task description does not

address this issue. The keys are generated by sending proper index from processor to AES

encryption core, which is realized on hardware and AES module returns generated key to

processor, which stores it to proper location. Sorting is done in processor.

Sorting algorithm

To choose the most effective sorting algorithm, we analyzed the data we need to sort. Since it

was written in the task description that data would be generated by LFSR. This means that each

data word will be unique and uniformly distributed over the numerical space from 1 to 2
32

-1.

Also having analyzed statistical distribution of data from test-bench, we noticed that in

approximately 25% of the cases the first word is replaced by zeros, ~12% of data has zeros in 2

first words, and ~12% have zeros in 3 first words while the remaining does not contain zeros for

whole word. Thus we decided to start sorting by dividing data into 4 groups according to the

distribution of zeros. Each group will then be sorted separately. Since the first non-zero word in

each record is unique because of the LFSR properties, we do not need to sort all 4 words, only

the first one. We also made algorithm of being aware of any other data. The algorithm can

handle any arbitrary data of four 32-bit words. The analysis of data distribution is performed

during data decryption and then either Comb11 sorting is used for groups’ data sorting or

Comb11 sorting algorithm is used for whole data sorting. Moreover, hashing of n first bits of

word is implemented before data sorting. Where n bits is the power of 2 of amount of all data

and n can be maximum 16. Initially, hashing was planned to be implemented in hardware, but as

we did not get in time correctly working DMA controller hashing is left in software.

AES

encryption

Power PC

PLB

DRAM

controller

DRAM

Results

Results without hashing in software and taking into account only data distribution according

statistics (project WithoutHashing):

Sorting starts

Case (rand, pwr= 6) : Elapsed 216, correct

Case (rot, pwr= 6) : Elapsed 211, correct

Case (rand, pwr= 10) : Elapsed 3660, correct

Case (rot, pwr= 10) : Elapsed 3718, correct

Case (rand, pwr= 14) : Elapsed 66161, correct

Case (rot, pwr= 14) : Elapsed 69361, correct

Case (rand, pwr= 18) : Elapsed 1215993, correct

Case (rot, pwr= 18) : Elapsed 1294237, correct

Relative Geometric Mean: 49.819154

Sorting completed

Results with hashing in software and taking into account any data distribution (project

WithHashing):

What could be done

First thing, what could be done is faster SDRAM access from/to AES IP core. Unfortunately, we

could not get in time correctly working DMA controller. Also we had very small amount of

resources – only 3-4 person-weeks and the time went also for studying the platform. Secondly,

we wanted to make hashing in hardware. It was initially planned, however without DMA

controller it was not possible. Also we planned to have at least 2 AES IP cores, generating keys

in pipeline. It doesn’t make sense to talk about other improvements without checking

optimization options mentioned above.

