
Insert Paper Title here

1

M4- Crypto -Sorter

VJ Sananda

AMD

2

Outline

• Team/Goals

• Reference Design Investigation

• Optimized Algorithm Development

• HW/SW Partitioning

• Define HW Architecture

• Theory of Operation

• Performance Analysis

• Design Implementation

• Results

• Improvements

Insert Paper Title here

2

3

Team / Goals

• Had expected a team of 5

• All dropped out because of work related commitments

• Army - Of – One

• Must Work .. The greatest architecture is worthless if it

doesn’t.

4

FPGA Platform

• XUPV2Pro Board

• 300 MHz PPC

• Cache Enabled

• PLB Bus Clock 100 MHz

• 4KB IOCM

• Stdin/Stdout via OPB_Uartlite (no license restrictions)

• DDR 512Mb Dual-Rank , PLB

• Developed in ISE/EDK 7.1i, Ported to 91i final week

Insert Paper Title here

3

5

• Ran gprof using general purpose CPU

• 78% of time spent in AES crypto calls, because of in

place sort.

• Every record access and swap uses AES keygen

function

• Modified RefDesign to first decrypt, then sort, then

encrypt. Performance increased 7X.

• Follow similar strategy for HW accelerator

Reference Design

Algorithm Investigation

6

• Accelerate encryption/decryption in HW, however what

can we do about sorting ?

• Max Datasize of 262144 records = 4Mbytes > Localized

Block RAM (306 Kbytes)

• Overhead of repeated access to DRAM could add up, so

decided against 100% HW based sort.

• Partition sort between HW and SW

Optimized Algorithm

Development

Insert Paper Title here

4

7

HW/SW Partitioning

HW HWHW/SW

8

• Partitioning sort between HW/SW

• Bottom up Merge Sort is a good fit.

• HW will decrypt and sort a block records

• SW on PPC will then do a bottom up merge sort using

these sorted blocks

• Final Encryption Pass using the HW to produce results.

Optimized Algorithm

Development

Insert Paper Title here

5

9

• Developed SW version of Merge Sort,

• Non-recursive (loop unrolled).

• Function call defined in msort.c

– int merge_all_sorted_blocks(int blocksize, ……)

• Number of sorted records in each block = blocksize

• Easy to incorporate improved HW sort capabilities, either

– Larger blocksizes

– Multiple HW sorters running in parallel

Optimized Algorithm

Development

10

• Decided on a 64 bit PLB peripheral with FIFOs for Read

and Write

• Allows scaling up to multiple accelerators. Note that

optimized algorithm allows this.

• Start with 64 bit PLB slave peripheral.

• Incorporate bus-mastering as time permits

• FIFO Depth = 128 (64bit words) which is equivalent to 64

Records

• Decided 64 would be the upper limit on HW sort

capabilities. (Currently at 4)

• 4 Registers for Control and Status

Define HW Architecture

Insert Paper Title here

6

11

• Each Record consists of 4 , 32 bit fields.

• Record Compare equivalent to 128 bit compare with f1

field towards the MSB and f4 towards LSB

• That is R_128 = { R.f1, R.f2, R.f3,R.f4 }

• Record R1 < Record R2 if R1_128 < R2_128

• So HW uses 128 bit data path

• For PLB peripheral FIFO writes and reads {R.f1,R.f2} is

the 1st , followed by {R.f3,R.f4}

Define HW Architecture

12

HW Architecture:

Block Diagram

FIFO RD

64 to 128

FIFO WR

128 to 64Record R1

Record R2

Record R3

Record R4

AES
Keygen

XOR

Decrypted

Index Control

C

C

Record R2

Record R1

Record R3

Record R4

Sorted : 2

HW
Merge
Sort 4

Record R3

Record R2

Record R4

Record R1

Sorted : 4

128 bit datapath

64 bit datapath

Sort Enable

Insert Paper Title here

7

13

HW Architecture:

Sub-blocks

FIFO RD

64 to 128

FIFO WR

128 to 64

AES
Keygen

C
Record R2

Record R1

HW
Merge
Sort 4

Record R3

Record R2

Record R4

Record R1

FIFO read/write logic + data conversion between
64 and 128 bit

AES decryption key generator for a specific
Record index, synchronized to FIFO reads
Fixed global key

128 bit compare that sends sorted output
to register file of size 2

Merge sorter that outputs 4 sorted
Records

14

• Definitions

– Reg_File: register file of size 2 holding sorted Records. That is

Reg_File[0] < Reg_File[1]

– Reg_File_Ptr is a pointer referencing Reg_File

• In HW we build 2 Reg_File structures each holding 2

records , sorted using a simple 128 bit compare

– Reg1_File and Reg2_File

– Associated pointers are Reg1_File_Ptr and Reg2_File_Ptr

– Valid values for Reg*_File_Ptrs are 0 and 1, use an extra bit

(Reg*_File_Ptr == 2) to detect when we have output both values

HW Merge Sort 4:

Pseudo Code

Insert Paper Title here

8

15

while (Entries still to be output from Reg*_Files) {

if (Reg2_File not empty AND Reg1_File empty) {

Output Reg2_File[Reg2_File_Ptr++];

continue;

}

if (Reg1_File not empty AND Reg2_File empty) {

Output Reg1_File[Reg1_File_Ptr++];

continue;

}

if (Reg1_File[Reg1_File_Ptr] < Reg2_File[Reg2_File_Ptr])

Output Reg1_File[Reg1_File_Ptr++];

else

Output Reg2_File[Reg2_File_Ptr++];

}

HW Merge Sort 4:

Pseudo Code

16

Theory of Operation

FIFO RD

64 to 128 Record R1

Record R2

Record R3

Record R4

AES
Keygen

XOR

Decrypted
Index Control

Decryption and Sort Pass

1. Initialize index

2. Read Record and Decrypt

3. Repeat for 4 records

Insert Paper Title here

9

17

Theory of Operation

FIFO RD

64 to 128 Record R1

Record R2

Record R3

Record R4

AES
Keygen

XOR

Decrypted

Index Control

C

C

Record R2

Record R1

Record R3

Record R4

Sorted : 2

Sort Enabled

Decryption and Sort Pass

4. Sort groups of 2 records

using 128 bit compare

18

Theory of Operation

FIFO RD

64 to 128

FIFO WR

128 to 64Record R1

Record R2

Record R3

Record R4

AES
Keygen

XOR

Decrypted

Index Control

C

C

Record R2

Record R1

Record R3

Record R4

Sorted : 2

HW
Merge
Sort 4

Record R3

Record R2

Record R4

Record R1

Sorted : 4

Sort Enable

Decryption and Sort Pass

5. HW Merge Sort 4

6. Write to Output Fifo

Insert Paper Title here

10

19

Theory of Operation

FIFO RD

64 to 128

FIFO WR

128 to 64Record R1

Record R2

Record R3

Record R4

AES
Keygen

XOR

Decrypted

Index Control

C

C

Record R2

Record R1

Record R3

Record R4

Sorted : 2

HW
Merge
Sort 4

Record R3

Record R2

Record R4

Record R1

Sorted : 4

Sort Enable

Decryption and Sort Pass

7. Repeat Steps (2) through (6)

until all Records processed

20

Theory of Operation

FIFO RD

64 to 128

FIFO WR

128 to 64Record R1

Record R2

Record R3

Record R4

AES
Keygen

XOR

Decrypted

Index Control

C

C

Record R2

Record R1

Record R3

Record R4

Sorted : 2

HW
Merge
Sort 4

Record R3

Record R2

Record R4

Record R1

Sorted : 4

Sort Enable

8. SW Bottom up Merge Sort on PPC

completes sorting operation.

Insert Paper Title here

11

21

Theory of Operation

FIFO RD

64 to 128

FIFO WR

128 to 64Record R1

Record R2

Record R3

Record R4

AES
Keygen

XOR

Encrypted

Index Control

C

C

Record R1

Record R2

Record R3

Record R4

HW
Merge
Sort 4

Record R1

Record R2

Record R3

Record R4

Sort Disabled

Encryption Pass

9. Reinitialize Index

10. Disable sorter

11. Read Records and Encrypt

22

Theory of Operation

FIFO RD

64 to 128

FIFO WR

128 to 64Record R1

Record R2

Record R3

Record R4

AES
Keygen

XOR

Encrypted

Index Control

C

C

Record R1

Record R2

Record R3

Record R4

HW
Merge
Sort 4

Record R1

Record R2

Record R3

Record R4

Sort Disabled

Encryption Pass

12. Repeat Steps (10) through (11)

until all Records Encrypted

13. DONE

Insert Paper Title here

12

23

• PLB FIFO Drain & Fill Rate by accel_sort.v

• FIFO Read and Data Conversion : 2 PLB Cycles

• Keygen = 10 PLB Cycles

• For 4 Records, Read and Decrypt : (10+2) * 4 = 48 PLB

Cycles

• 2 Record compare = 2 PLB Cycles

• 2 cycles per Record for Merge Sort and Output, = 2 x 4

= 8 PLB Cycles

• Total PLB Cycles = 48 + 2 + 8 = 58 Cycles.

• Total in CPU Cycles = 58*3 = 174

Performance Analysis

24

• PLB FIFO Fill Rate from DRAM. Initiated by PPC : 5

PLB Cycles + 2 CPU Cycles + DRAM access

• PLB FIFO Drain Rate from DRAM. 6 PLB Cycles + 3

CPU Cycles + DRAM access

• For 4 operands, in CPU Cycles ((5*3+2)+(6*3+2))*4 =

148 cycles + 2 * DRAM access

• If we assume a 50 ns DRAM access and arbitration

time

• Total in CPU Cycles = 148 + (5*3)*2 = 178

Performance Analysis

Insert Paper Title here

13

25

• The PLB FIFO fill and drain rate by the PPC is close to

(but smaller) than that by the HW accelerator.

• So should be able to Read Results from the FIFO,

without stalling.

• Also indicates that to service multiple HW accelerators

will require a much faster DRAM to PLB FIFO data path

• For now, aim is for this single HW accelerator to

provide the “best - bang - for - the - buck“.

Performance Analysis

26

• For AES Keygen used AES Core from Open Cores.org

(author Rudolf Usselman)

• Is free-running, Added logic to set start index, reset

index.

• Qualified AES Core using Keys in reference design

• Quick XST Synthesis run to confirm 100MHz+ speed

• AES Core performs 1 encryption in 10 cycles.

Design Implementation

Insert Paper Title here

14

27

• Used Create/Import IP Wizard in EDK to generate Core-

Connect - PLB interface files in VHDL.

• HW Accelerator (accel_sort.v) developed in Verilog,

instantiated in user_logic.v

• Due to Manpower limitations, had to aim for rtl code

being Correct by Construction

• Used robust handshake protocols , ready – push/pull

• No “just in time” logic, which can be very brittle.

Design Implementation

28

• accel_sort.v has the master control machine.

• Initiates FIFO read using fifo_rd_64_to_128.v

• Pulls key from aes_keygen.v for decrypt/encrypt

• Does 2 Record compare

• Does 4 Record Merge Sort

• Initiates FIFO write using fifo_wr_128_to_64.v

• 1866 non blank lines of rtl verilog code

– 762 in AES rtl IP , 1104 lines of new rtl

• 298 non blank lines of testbench verilog code

Design Implementation

Insert Paper Title here

15

29

• Primary change made to main_tc.v is to replace call to

sortrecord()

• In EDK 9.1i xbasic_types.h in PPC405_0/include has

conflicting typedefs for u32 and u8 (also defined in

aes_core.h)

• Changed aes_core.h

u32 � _u32_

u8 � _u8_

• 477 non blank lines of driver code

Design Imp: Changes
made to Ref Design Files

30

//VJS:Added hw merge sort

#include "sortrecord_hw_plb.h"

#include "msort.h“

//VJS:Changed cache enable from 0xf0000000 to

0xc0000000

XCache_EnableICache(0xc0000000);

//VJS:Comment out refcode and add hw accel call

//sortrecord_tc(6+4*i);

sortrecord_hw_plb(6+4*i);

Essentially only replaced sortrecord_tc call.

Changes made to Ref

Design Files : main_tc.c

Insert Paper Title here

16

31

• Bitstream configured using Bootloop

• Configuration Bitstream : download.bit

– Click on EDK download icon

• Use XMD to download and run executable:

– dow metric/executable.elf

– run

• SW Project with test code is metric

• Submission is for ISE/EDK 9.1i with latest service packs
for ISE and EDK

Results: Running/Debug

32

Results: RefDesign Vs.

M4-CryptoSort

Insert Paper Title here

17

33

• Number of Slice Flip Flops: 15%

– 4,357 out of 27,392

• Number of occupied Slices: 32%

– 4,482 out of 13,696

• Total Number of 4 input LUTs: 24%

– 6,784 out of 27,392

• Number of Block RAMs: 10%

– 14 out of 136

Results : Resource Utilization

34

Sorting starts

Case (rand, pwr= 6) : Elapsed 220, correct

Case (rot, pwr= 6) : Elapsed 216, correct

Case (rand, pwr= 10) : Elapsed 5902, correct

Case (rot, pwr= 10) : Elapsed 5900, correct

Case (rand, pwr= 14) : Elapsed 119071, correct

Case (rot, pwr= 14) : Elapsed 118352, correct

Case (rand, pwr= 18) : Elapsed 2285336, correct

Case (rot, pwr= 18) : Elapsed 2265987, correct

Relative Geometric Mean: 33.003149

Sorting completed

Results: Sample Output

Insert Paper Title here

18

35

• Works !

• Passes metrics test bench

• Score ~33

• Ref Design Score ~1

• In case you were wondering:

M4 Crypto Sort = MergeSort - Block4 Crypto Sort

Results

36

• Scale using multiple HW accelerators, will require a bus

mastering solution (due to time and manpower

constraints had to stop with a PLB slave implementation).

• Explore sorting larger blocks in HW using say a bitonic

sort.

• With a fast DRAM access path, can pre-compute the

encryption/decryption keys once, and then fetch as

needed.

Improvements

