MEMOCODE 2008

L o it 1o
v L Eeihares :':.--a '
HARDWARE SOFTWARE

CODESIGN CONTEST

M4- Crypto -Sorter

VJ Sananda
AMD

MEMOCODE 2008

Outline e

CODESIGN CONTEST

» Team/Goals

» Reference Design Investigation

» Optimized Algorithm Development
* HW/SW Partitioning

» Define HW Architecture

» Theory of Operation

» Performance Analysis

» Design Implementation

* Results

» Improvements

Insert Paper Title here

1




Mam. £ 2008
& e

Team / Goals e

CODESIGN CONTEST

Had expected a team of 5

All dropped out because of work related commitments
Army - Of — One

Must Work .. The greatest architecture is worthless if it
doesn’t.

FPGA Platform e i

CODESIGN CONTEST

« XUPV2Pro Board
» 300 MHz PPC
» Cache Enabled

* PLB Bus Clock 100 MHz

* 4KB IOCM

+ Stdin/Stdout via OPB_Uartlite (no license restrictions)
« DDR 512Mb Dual-Rank , PLB

» Developed in ISE/EDK 7.1i, Ported to 91i final week

Insert Paper Title here

2




Reference Design B 3o

P B ket H

HARDWARE SOFTWARE

Algorithm Investigation T

» Ran gprof using general purpose CPU

* 78% of time spent in AES crypto calls, because of in
place sort.

» Every record access and swap uses AES keygen
function

» Modified RefDesign to first decrypt, then sort, then
encrypt. Performance increased 7X.

» Follow similar strategy for HW accelerator

Optimized Algorithm

e
HARDWARE SOFTWARE

Development R e

» Accelerate encryption/decryption in HW, however what
can we do about sorting ?

+ Max Datasize of 262144 records = 4Mbytes > Localized
Block RAM (306 Kbytes)

* Overhead of repeated access to DRAM could add up, so
decided against 100% HW based sort.

» Partition sort between HW and SW

Insert Paper Title here

3




MENMOCODE 2008

HW/SW Partitioning o ki

CODESIGN CONTEST

index 2 | 4fields/recard
#0 record ] record
#1 recard f recard
#2 record recard
#3 record record
# record record
|:> Decrypt sort Encrypt
HW HW/SW HW
#hl record record
. . . MEMOCODE 2008
Optimized Algorithm
Development ol

* Partitioning sort between HW/SW

Bottom up Merge Sort is a good fit.

HW will decrypt and sort a block records

SW on PPC will then do a bottom up merge sort using
these sorted blocks

Final Encryption Pass using the HW to produce results.

Insert Paper Title here

4




Optimized Algorithm B 3o

P B ket 4

HARDWARE SOFTWARE

Deve | O p m e nt CODESIGN CONTEST

» Developed SW version of Merge Sort,

Non-recursive (loop unrolled).

Function call defined in msort.c
— int merge_all_sorted_blocks(int blocksize, ...... )

Number of sorted records in each block = blocksize

Easy to incorporate improved HW sort capabilities, either
— Larger blocksizes
— Multiple HW sorters running in parallel \‘//,

MEMO
& 2

Define HW Architecture o ey

CODESIGN CONTEST

» Decided on a 64 bit PLB peripheral with FIFOs for Read
and Write

» Allows scaling up to multiple accelerators. Note that
optimized algorithm allows this.

« Start with 64 bit PLB slave peripheral.
* Incorporate bus-mastering as time permits

* FIFO Depth = 128 (64bit words) which is equivalent to 64
Records

» Decided 64 would be the upper limit on HW sort
capabilities. (Currently at 4)

4 Registers for Control and Status

Insert Paper Title here

5




Define HW Architecture

MEMOCODE 2008

.

HARDWARE SOFTWARE

CODESIGN CONTEST

» Each Record consists of 4 , 32 bit fields.

* Record Compare equivalent

to 128 bit compare with 1

field towards the MSB and 4 towards LSB

 Thatis R 128 = { R.f1, R.f2,
* Record < Record R2 if

R.f3,R.f4}
<R2 128

* So HW uses 128 bit data path

» For PLB peripheral FIFO writes and reads {R.f1,R.f2} is
the 1st, followed by {R.f3,R.14}

1 . MEMOCODE 2008
HW Architecture: B,
Block Diagram L
—— 128 bit datapath
— 64 bit datapath
Decrypted Sorted : 2
64 to 128 _ 128 to 64
° Record R1 Record R2 °
R R1
|\s’|efgz —| Record R2
Record R3 ort Record R4
Record R3 - —
Kevaen ecor
” utaidine
Sorted : 4
Index Control Sort Enable

Insert Paper Title here

6




HW Architecture: . i

e

S b bl k HARDYARE SRR
u - OC S CODESIGN CONTEST
5285 119 ELEORR FIFO read/write logic + data conversion between
64 to 128 128 to 64 64 and 128 bit
AES AES decryption key generator for a specific
Keygen Record index, synchronized to FIFO reads
Fixed global key
Record R2 128 bit compare that sends sorted output
C to register file of size 2
Record R1

d

Record R3 Merge sorter that outputs 4 sorted
HW Records
Merge |—| Record R2

Sort4
/ Record R4

Record R1

HW Merge Sort 4: -

B O e e

Pseudo Code S

* Definitions

— Reg_File: register file of size 2 holding sorted Records. That is
Reg_File[0] < Reg_File[1]
is a pointer referencing Reg_File

* In HW we build 2 Reg_File structures each holding 2
records , sorted using a simple 128 bit compare
— Reg1_File and Reg2_File

— Associated pointers are and
— Valid values for are 0 and 1, use an extra bit
( == 2) to detect when we have output both values

Insert Paper Title here

7




HW Merge Sort 4. BN

Pseudo Code T

while (Entries still to be output from Reg* Files ) {

if ( Reg2 File not empty AND empty) {
Output Reg2_ File[Reg2_ File Ptr++];
continue;
}
if ( not empty AND Reg2 File empty) {
Output
continue;
}
if ( < Reg2_File[Reg2_File_Ptr])
Output
else
Output Reg2_ File[Reg2_ File Ptr++];
}
MEMOCODE 2008
H A -
Theory of Operation Frosmeor e

CODESIGN CONTEST

1 Decryption and Sort Pass

1. Initialize index
FIFO RD
64 to 128

2. Read Record and Decrypt
3. Repeat for 4 records

Decrypted

Index Control

Insert Paper Title here

8




MEMOCODE 2008

Theory of Operation g i

CODESIGN CONTEST

1 Decryption and Sort Pass

4. Sort groups of 2 records
FIFO RD
64 to 128

using 128 bit compare

Decrypted Sorted : 2

Record R1
Record F3
Record R4
Index Control Sort Enabled
18
MEMOCODE 2008
H L Y0y -
Theory of Operation g i
CUDE;!E-N CONTEST
1 Decryption and Sort Pass T

5. HW Merge Sort 4
6. Write to Output Fifo

Decrypted Sorted : 2
64 to 128 Record R1 128 to 64
Record R2
Record R1
Record R2 HW Record R3
|\s’|e|’ge —| Record R2
ort 4
Record R3 Record R3 Record R4
R R4 Record R1
Record R4 ecord
Sorted : 4
Index Control Sort Enable

Insert Paper Title here

9




MEMOCODE 2003

Theory of Operation g i

CODESIGN CONTEST

1 Decryption and Sort Pass T

7. Repeat Steps (2) through (6)
FIFO RD FIFO WR

until all Records processed

Decrypted Sorted : 2

R R1
Record R2
Record R1
Record R2 HW Record R3
Merge |—| Record R2
Sort4
Record R3 Record R3 Record R4
R d R4 Record R1
Record R4 ecor
Sorted : 4
Index Control Sort Enable
20
MEMO! DE_ZW_B
Theory of Operation e

CODESIGN CONTEST

8. SW Bottom up Merge Sort on PPC
completes sorting operation.

Insert Paper Title here

10




MEMOCODE 2008

Theory of Operation g i

CODESIGN CONTEST

1 Encryption Pass T

9. Reinitialize Index
128 to 64
Record R1

10. Disable sorter
11. Read Records and Encrypt
\_ /
Record R2 Record R1
Mgkge |—| Record R2

Encrypted
Record R1

Record R2
Record R3

Record R4
Index Control -

FIFO RD
64 to 128

Record R3 Record R3

Record R4 Record R4

21

MEMOCODE 2008

Theory of Operation roomor

CODESIGN CONTEST

1 Encryption Pass T

12. Repeat Steps (10) through (11)
128 to 64
Record R1

until all Records Encrypted
Record R2 Record R1

13. DONE
Mgxge |—| Record R2

Record R3 7/ \ Record R3
Record R4 Record R4

Index Control -

22

Insert Paper Title here

11




23

MEMO! :
A b

Performance Analysis g i

CODESIGN CONTEST

+ PLB FIFO Drain & Fill Rate by accel_sort.v
* FIFO Read and Data Conversion : 2 PLB Cycles
+ Keygen = 10 PLB Cycles

» For 4 Records, Read and Decrypt : (10+2) * 4 = 48 PLB
Cycles

* 2 Record compare = 2 PLB Cycles

+ 2 cycles per Record for Merge Sort and Output, = 2 x 4
= 8 PLB Cycles

+ Total PLB Cycles = 48 + 2 + 8 = 58 Cycles.
+ Totalin CPU Cycles = 58*3 = 174

24

MEMO
A e

Performance Analysis D il

CODESIGN CONTEST

PLB FIFO Fill Rate from DRAM. Initiated by PPC : 5
PLB Cycles + 2 CPU Cycles + DRAM access

* PLB FIFO Drain Rate from DRAM. 6 PLB Cycles + 3
CPU Cycles + DRAM access

» For 4 operands, in CPU Cycles ((5*3+2)+(6*3+2) )*4 =
148 cycles + 2 * DRAM access

+ |If we assume a 50 ns DRAM access and arbitration
time

+ Totalin CPU Cycles = 148 + (5*3)*2 = 178

Insert Paper Title here

12




MEMO C
4 %

Performance Analysis o iy

CODESIGN CONTEST

+ The PLB FIFO fill and drain rate by the PPC is close to
(but smaller) than that by the HW accelerator.

* So should be able to Read Results from the FIFO,
without stalling.

+ Also indicates that to service multiple HW accelerators
will require a much faster DRAM to PLB FIFO data path

+ For now, aim is for this single HW accelerator to
provide the “best - bang - for - the - buck®.

25

MEMO
& 2

Design Implementation oamean i

CODESIGN CONTEST

» For AES Keygen used AES Core from Open Cores.org
(author Rudolf Usselman)

* |s free-running, Added logic to set start index, reset
index.

» Qualified AES Core using Keys in reference design
* Quick XST Synthesis run to confirm 100MHz+ speed

» AES Core performs 1 encryption in 10 cycles.

26

Insert Paper Title here

13




MEMO C
4 %

Design Implementation o e

CODESIGN CONTEST

Used Create/Import IP Wizard in EDK to generate Core-
Connect - PLB interface files in VHDL.

HW Accelerator (accel_sort.v) developed in Verilog,
instantiated in user_logic.v

Due to Manpower limitations, had to aim for rtl code
being Correct by Construction

Used robust handshake protocols , ready — push/pull
No “just in time” logic, which can be very brittle.

27

MEMO
& 2

Design Implementation oamean i

CODESIGN CONTEST

accel_sort.v has the master control machine.

Initiates FIFO read using fifo_rd 64 to 128.v
Pulls key from aes_keygen.v for decrypt/encrypt
Does 2 Record compare

Does 4 Record Merge Sort

Initiates FIFO write using fifo_wr 128 to 64.v

1866 non blank lines of rtl verilog code
— 762 in AES rtl IP , 1104 lines of new rtl

298 non blank lines of testbench verilog code

28

Insert Paper Title here

14




Design Imp: Changes B e

P B ket 4

HARDWARE SOFTWARE

made to Ref Design Files T

» Primary change made to main_tc.v is to replace call to
sortrecord()

* In EDK 9.1i xbasic_types.h in PPC405_0/include has
conflicting typedefs for u32 and u8 (also defined in
aes_core.h)

+ Changed aes_core.h

u32 > u32_
u8 > u8

* 477 non blank lines of driver code

29

Changes made to Ref WY
Design Files : main_tc.c "ot

//VJS:Added hw merge sort
#include "sortrecord hw_plb.h"
#include "msort.h™

//VJS:Changed cache enable from 0xf0000000 to
0xc0000000

XCache_EnableICache (0xc0000000);
//VJS:Comment out refcode and add hw accel call

//sortrecord_tc (6+4*i);
sortrecord_hw_plb (6+4*i);

Essentially only replaced sortrecord_tc call.

30

Insert Paper Title here

15




Results: Running/Debug

31

MENMOCODE 2008

A

P B ket H

HARDWARE SOFTWARE
CODESIGN CONTEST

Bitstream configured using Bootloop

Configuration Bitstream : download.bit
— Click on EDK download icon

Use XMD to download and run executable:

— dow metric/executable.elf

— run

SW Project with test code is metric
Submission is for ISE/EDK 9.1i with latest service packs

for ISE and EDK

Results: RefDesign Vs.
M4-CryptoSort

32

MEMOCODE 2008

A

7 e St

HARDWARE SOFTWARE
CUDE?E-N CONTEST

Insert Paper Title here

16




Results : Resource Utilization

33

MEMOCODE 2008

A .

e

HARDWARE SOFTWARE
CODESIGN CONTEST

Number of Slice Flip Flops: 15%
— 4,357 out of 27,392
Number of occupied Slices: 32%
— 4,482 out of 13,696

Total Number of 4 input LUTs: 24%
— 6,784 out of 27,392

Number of Block RAMs: 10%
— 14 out of 136

Results: Sample Output

34

MENMOCODE 2008

A

7 e S

HARDWARE SOFTWARE
CUDE?E-N CONTEST

Sorting starts

Case
Case
Case
Case
Case
Case
Case
Case

Relative Geometric Mean:
Sorting completed

(rand,
( rot,
(rand,
( rot,
(rand,
( rot,
(rand,
( rot,

pwr=
pwr=
pwr=
pwr=
pwr=
pwr=
pwr=

pwr=

6)

6)
10)
10)
14)
14)
18)
18)

: Elapsed 220,
: Elapsed 216,
: Elapsed 5902,
: Elapsed 5900,
: Elapsed 119071,
: Elapsed 118352,
: Elapsed 2285336,
: Elapsed 2265987,
33.003149

correct
correct
correct
correct
correct
correct
correct

correct

Insert Paper Title here

17




35

Mam. £ 2008
& e

Resulis e s

CODESIGN CONTEST

 Works |

» Passes metrics test bench

s

\

» Score ~33

. & Ref Design Score ~1

* In case you were wondering:
M4 Crypto Sort = MergeSort - Block4 Crypto Sort

36

Improvements oamean i

CODESIGN CONTEST

+ Scale using multiple HW accelerators, will require a bus
mastering solution (due to time and manpower
constraints had to stop with a PLB slave implementation).

» Explore sorting larger blocks in HW using say a bitonic
sort.

» With a fast DRAM access path, can pre-compute the
encryption/decryption keys once, and then fetch as
needed.

Insert Paper Title here

18




