FERAL

Dr. Thomas Kuhn

Thomas.Kuhn@iese.fhg.de

Growing importance of Embedded Software

2

© Fraunhofer IESE

Challenges when developing and testing embedded software

- Embedded (Control) Software is developed using Model Driven Development approaches
 - Simulink, ASCET, Scade
- Tightly integrated with other system components
 - Interacts through sensors and actuators with the environment
 - Interacts with other software components
 - Shares platform and network resources with other software components
- Testing of embedded software needs to take this into account
 - Existing simulation solutions enable virtual testing of embedded software
 - Virtual platforms, Environment simulators, Network simulators

3

© Fraunhofer IESE

Simulators

- Enable early evaluation of embedded software in realistic context
- Provide accurate, yet specialized environments

But: Embedded Software complexity is increasing

System Level Design and Testing

Evaluating E/E Architecture properties

- Current solutions for embedded systems focus on component development and testing
 - Functional development of individual components
 - Board level + mandatory devices for evaluating behavior of system under test
- Next generation embedded systems require more complex E/E Designs
 - How many ECUs are necessary for my product variants and expected growth?
 - Where to consolidate software functions?
 - How to segregate safety relevant functions on same hardware from each other?
 - Which busses are necessary? Wireless access? How to configure and to protect them?

\rightarrow System level architecture design and architecture evaluation is getting more important 6

System Level Design and Testing

System level architecture evaluation requires new simulation approaches

7

modeling

IESE

A simulated deployment of the example system requires many components

- E/E evaluation on system level requires coupling of specialized simulators
 - One integrated holistic scenario
 - Coupling on different abstraction levels must be supported to manage complexity
 - Project specific development and modeling environments
 - Possibly additional simulators
 - Wireless networks
 - Fault injection

IESE

8

applied system modeling

. . .

The FERAL simulator coupling framework

Simulator coupling requires syntactic and semantic integration

- Syntactic integration: Simulated network messages, value types, Simulator API
- Specific to most simulators

Encapsulated as simulation components

innovationszentrum applied system modeling

The FERAL simulator coupling framework

- Semantic integration is provided by directors
 - Encapsulate models of computation and communication
 - Directors may be nested ensure proper linking of simulator semantics into one integrated scenario
 - This is supported by semantic contract between nested directors

FERAL – Execution of Components

11

© Fraunhofer IESE

FERAL - Time and Event based Director semantics

Simulator coupling challenges

- Accuracy vs. efficiency
 - Simulator coupling is resource intensive due to synchronization overhead
 - Parts of a scenario require tight coupling, other parts allow a less tight integration
- Feral simulation model is based on Events and active periods
 - Foundation for all directors

IESE

Simulator coupling challenges

- Clock drift between simulators is permitted inaccuracy
 - Significantly reduces synchronization overhead
 - Enables components to process their active period without interferences
 - Foundation of distributed simulations
 - Deferring of events that exceed active period

14

applied system modeling

IESE

Evaluation

Impact of simulated network behavior to one function

Evaluation

Impact of simulated network behavior to one function

Conclusion

Simulations are state of the art in embedded systems development

- Individual and focused simulators
- Early evaluation of system level decisions require simulator coupling

Fraunhofer FERAL enables integration of simulators into holistic scenarios

- Enables early validation of system behavior or function behavior in system context
- Predict system behavior in realistic conditions

Benefits

- Prediction of communication performance
- Evaluation of safety concepts
- Substantiating architectural decisions

🗾 Fraunhofei

