> Sebastiaan J.C. Joosten Julien Schmaltz

Image: Testing Network-on-Chip Communication Fabrics Cristian Grecu, Resve Saleh

RTL design

Our approach

Invariants

Is this configuration reachable?

Violates #Q1 = #Q2

Satrajit Chatterjee, Michael Kishinevsky, Automatic Generation of Inductive Invariants from High-Level Microarchitectural Models of Communication Fabrics, CAV'10, LNCS vol 6174

Satrajit Chatterjee, Michael Kishinevsky, Automatic Generation of Inductive Invariants from High-Level Microarchitectural Models of Communication Fabrics, CAV'10, LNCS vol 6174

- Find (all?) linear equalities
- Verifying "Q1_in = Q2_in" is equivalent to UNSAT
- (co)NP-hard in theory

Observation

The set of conjunctions of <u>independent wires</u> is a <u>linearly independent</u> set (Interpret High as 1, Low as 0)

	Α	В	AB
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Observation

The set of conjunctions of <u>independent wires</u> is a <u>linearly independent</u> set (Interpret High as 1, Low as 0)

	Α	В	AB	A+B	A B
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	0	1	1
1	1	1	1	2	1

Translating RTL to a Linear System

- A & B → AB
- $A \mid B \rightarrow A + B AB$
- A XOR $B \rightarrow A + B 2 \cdot AB$
- $\neg A \rightarrow T A$ T for True

• A & (B |
$$\neg$$
 A) \rightarrow A & (B | (T – A))
 \rightarrow A(B + (T – A) – B(T – A))
= AB + AT – AA – ABT + ABA
= AB + A – A – AB + AB
= AB

Obtaining invariants from the linear system

enter = (enqueue & not_full) exit = (dequeue & not_empty) Δ FIFO = enter - exit

- One such equation per buffer
- Extra equations for data dependencies
- Equations over linearly independent variables
 All linear dependencies of buffers are found

http://genoc.cs.ru.nl/

