
Florin Balasa
American University in Cairo

Compiler-Directed Memory Hierarchy Design

for Low-Energy Embedded Systems

Ilie I. Luican
Microsoft Inc., USA

Cristian V. Gingu
Fermilab

Noha Abuaesh
American University in Cairo

Outline

Memory management for embedded signal processing applications

The problem: Memory hierarchy design for low-energy

The model: Polyhedral framework for memory management

The algorithms: Energy-aware assignment to memory layers

 Energy-aware memory banking

Experimental results and conclusions

Low-Power Memory Management

Real-time multidimensional signal processing systems

(video and image processing, telecommunications,

 audio and speech coding, medical imaging, etc.)

The performance+energy+area of the whole system

are significantly influenced by the memory subsystem

Gap between processor and memory speed memory unable

to provide data and instructions at the pace required by the processor

“Memory Wall” [Wulf & McKee 1995]

or “Memory Bottleneck”

Advanced memory architectures

based on the concept of memory hierarchy

 lower levels in the hierarchy are made of small memories,

 close and tightly coupled to the computation units

 higher levels are made of increasingly large memories,

 far from the computation units

 the terms close and far refer to the effort needed

 to fetch/store a given amount of data from/to the memory

 the effort can be expressed in units of time or energy

 depending on the cost function of interest

Low-Power Memory Management

Simple Hierarchical Data Storage Organization

SPMs vs. Caches
[Banakar, Marwedel & al. 2002]

34% smaller area than caches of same capacity

40% lower power consumption than caches of same capacity

18% less clock cycles for a knapsack allocation algorithm

 (the access time of an SPM is typically within 1 clock cycle)

Low-Power Memory Management

in embedded

systems

No need to check at run time the availability of data in the SPM

No need of comparators, of the miss/hit acknowledging logic

Scratchpad memories (SPMs) are on-chip SRAMs

Low-Power Memory Management

The mapping of data to the SPM can be done statically

C[0] = 0; // input: int A[256][256]

for (int i=64; i<192; ++i) {

 for (int j=64; j<192; ++j) {

 B[i][j][0] = 0;

 for (int k=i–64; k<=i+64; ++k) {

 for (int l=j–64; k<=j+64; ++l) {

 B[i][j][129*k – 129*i + l – j + 8321] = A[i][j]

 – A[k][l] + B[i][j][129*k – 129*i + l – j + 8320] ;

 }

 }

 C[128*i + j – 8255] = B[i][j][16641] + C[128*i + j – 8256] ;

 }

}

out = C[16384] ; // output: out

Example of Behavioral Specification

Signal Assignment to Memory Layers

Map of memory accesses to signal’s A index space

33,025 accesses

Signal Assignment to Memory Layers

Map of memory accesses to signal’s A index space

24,961 accesses

1 access

8,192 accesses

Signal Assignment to Memory Layers

The problem

the dynamic energy consumption per memory access is

much smaller for the SPM than for external DRAM

the arrays may have very non-uniform access patterns

(the elements A[i][j] have 1 – 33,025 accesses)

an array may need a lot of storage: it may not be possible

to store it all within the SPM (array A needs 64 Kbytes)

Which array elements should be stored on-chip

such that the (static+dynamic) energy consumption

in the multi-layer memory subsystem be minimized ?

2 0

1 2

3

0

i

j

k

x

y
+ =

for (i=0; i<=2; i++)

for (j=0; j<= 3; j++)

… A [i+2*j+3] [j+2*k] …

for (k=0; k<= 4; k++)

if (6*i+4*j+3*k <= 12)

1

0

3D iterator

space

2D index

space

Signal Assignment: the Model

A[x(i, j, k)][y(i, j, k)]

 x T i u A i b    

Signal Assignment: the Model

The array references

represented as

(linearly-bounded)

lattices

The most intensely-accessed parts of an array

are typically covered by several array references

Intuitive

observation

Intersect the

array references !

LBL

Intersect lattices !

LBL1 LBL2
U

LBL

LBL1 = { x = T1·i1 + u1 | A1·i1 >= b1 }

LBL2 = { x = T2·i2 + u2 | A2·i2 >= b2 }

T1·i1 + u1 = T2·i2 + u2

Diophantine system of eqs.

{ A1·i1 >= b1 , A2·i2 >= b2 }

New polytope

Signal Assignment: the Model

Signal Assignment: the Model

Part of a DAG representing two lattices

whose intersection is not empty
(the difference may comprise several lattices)

DAG of LBLs
 The nodes without

predecessors represent the

partitions of the array space

Partitioning the Array Space

The central part M

of the array space

of signal A

receives 78% of

the memory

accesses

Signal Assignment to Memory Layers

focus on the LBLs whose assignment to the SPM layer

would yield the largest energy reduction

an LBL may need a lot of storage: it may not be possible

to store it all within the SPM (lattice M needs 16 Kbytes)

 What is to be done if the size of the SPM is too small

relative to the storage requirement of a lattice ?

The Assignment Algorithm

Slicing the Large Lattices

Fine-grain

lattices of

128 bytes

The lattice M of

16Kbytes is split

Signal Assignment to Memory Layers

The Assignment Algorithm

for (each signal in the application code)

 partition its array space into disjoint LBLs ;

initially, assign all the disjoint lattices L to the DRAM ;

 size(DRAM) = S size(L) ; size(SPM) = 0 ;

for (each disjoint lattice L) compute the energy reduction if L is assigned to SPM ;

do { select the lattice L yielding the largest reduction of energy ;

 if (size(SPM) + size(L) <= MAX_SPM_SIZE)

 assign L to the SPM: size(SPM) += size(L); size(DRAM) -= size(L) ;

 update the energy benefits of all the lattices still assigned to the DRAM ;

 else

 “slice” the lattice L relative to its next iterator and replace L by these LBLs ;

 compute the energy benefits of these new ‘finer-granularity’ lattices ;

} until (MAX_SPM_SIZE is reached || the max level of “slicing” is reached) ;

CACTI 6.5

Technology 32 nm

Frequency 400 MHz

The graphs of energy consumption by the SPM,

DRAM, and the 2-layer memory system

storing the array A of 64 Kbytes

87.94 mJ

52.30 mJ

3.06 mJ

The graphs of total access time to the SPM, to

the DRAM, and to the 2-layer memory system

storing the array A of 64 Kbytes

907.55 ms

521.16 ms

246.48 ms

CACTI 6.5

Technology 32 nm

Energy-aware SPM Banking

 Motivation

 Hardware cost overhead

 Energy overhead

 (but also time and area overhead)

Reduction of static & dynamic

 energy consumption with the

 size of the memory banks

Possibility of turning on/off

 the banks independently

Energy-aware SPM Banking

0

0 k n-1 k-1

EBank1+ EBank2 + DE12 < EMonolithic_SPM

Beneficial partitioning

n-1

 Bank 1 Bank 2

Monolithic SPM

Architecture with

monolithic SPM

Architecture with SPM

partitioned in 3 banks

On-chip Memory Banking

DE13

Energy-aware SPM Banking

0 k n-1 k-1

Mink{EBank1+ EBank2 }+ DE12

Optimal 2-way partitioning

 Bank 1 Bank 2

Exhaustive exploration with backtracking

Benini et al., IEEE Trans. CAD 2002

Using recursion Optimal M-way partitioning

Exhaustive exploration with backtracking

Benini et al., IEEE Trans. CAD 2002

for M = 2, 3 : optimal solutions

for M = 4 : optimal solution

for M > 4

CPU: usually over 1 hour

Partitions: many billions

Exploration using dynamic programming

Angiolini et al., IEEE Trans. CAD 2005

Advantage: no need of presetting M

Disadvantage: a huge data structure

(matrix: | SPM | x | TraceAccesses |)

Energy-aware SPM Banking

 Input 1 maximum number of banks M

 Input 2

array [DE12 , DE23 , … , DEM-1,M]

 whose elements DEk,k+1 are energy overheads

 implied by moving from k to k+1 banks

 Input 3 array of SPM addresses where the lattices of

 signals are mapped into the on-chip memory

 Input 4 array of R/W accesses for the on-chip lattices

 Output array of energetically-optimal bank boundaries

The Banking Algorithm

 First bank:

[addr0 , addri]

Partition the address space [addri , addrn] in at most M-1 banks

Start from monolithic SPM

Energy-aware SPM Banking

The Banking Algorithm

Last bank: [addri , addrn]

A better solution found !!

Partition the address space

[addrk , addrn]

in at most M-m banks

Bank m: [addri , addrk]

Energy-aware SPM Banking

Energy-aware SPM banking: the decrease of the SPM energy

consumption as different SPM partitions are analyzed

Application Scalars
Memory

accesses

Energy

DRAM

[mJ]

SPM

size

Energy

savings

DRAM+SPM

Energy

savings

[Brockmeyer]

CPU

[sec]

Dynamic

programming
21,082,751 83,834,000 2,515,020 32K 56.1 % 35.1 % 36.2

Motion

estimation
265,633 864,900 25,947 1K 50.7 % 28.6 % 12.5

Durbin’s

algorithm
252,499

1,004,993

30,150 512 62.2 % 37.4 % 8.9

SVD

updating

3,045,447 29,500,000 885,000 16K 46.5 % 28.2 % 24.5

Experimental Results on Signal Assignment to the

On-Chip and Off-Chip Memory Layers

(dynamic + static energy evaluations: CACTI 6.5)

Application
Address

space

CPU

Full_Expl.

(M=4) [sec]

CPU

[sec]

M=8

Energy savings

vs. Full_Expl.

(M=4)

Energy savings

vs. monolithic

SPM (M=8)

Motion detection 9,600 5,289 32.2 9.69 % 55.78 %

Motion

estimation
1,024 736 5.3 7.51 % 47.21 %

Durbin’s

algorithm
512 247 2.3 7.28% 46.52 %

SVD updating 16,384 7,524 65.2 10.94 % 59.88 %

Experimental Results on

Energy-Aware SPM Banking

Experimental Results

Conclusions

Integrated CAD methodology for system-level exploration,

focusing on memory management tasks

Energy-aware data assignment technique based on a library of

operations with integral polyhedra and lattices

The assignment algorithm could be extended for an arbitrary

number of layers of memory hierarchy if the functions of

energy spent per access and static power versus memory size

were available for each layer

Energy-aware banking algorithm based on the computation of

the intensity of memory accesses in the index space of arrays

