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Outline 

Memory management for embedded signal processing applications 

The problem:  Memory hierarchy design for low-energy 

The model:  Polyhedral framework for memory management 

The algorithms:  Energy-aware assignment to memory layers 

                                Energy-aware memory banking 

Experimental results  and  conclusions 



Low-Power Memory Management 

Real-time multidimensional signal processing systems 

(video and image processing, telecommunications, 

 audio and speech coding, medical imaging, etc.) 

The performance+energy+area of the whole system 

are significantly influenced by the memory subsystem 

 

Gap between processor and memory speed                memory unable  

to provide data and instructions at the pace required by the processor 

“Memory Wall”  [ Wulf & McKee 1995 ] 

or “Memory Bottleneck” 



Advanced memory architectures 

based on the concept of memory hierarchy 

  lower levels in the hierarchy are made of small memories, 

     close and tightly coupled to the computation units 

  higher levels are made of increasingly large memories, 

     far from the computation units 

  the terms close and far refer to the effort needed 

     to fetch/store a given amount of data from/to the memory 

  the effort can be expressed in units of time or energy 

     depending on the cost function of interest 

Low-Power Memory Management 



Simple Hierarchical Data Storage Organization 



SPMs  vs.  Caches  
[ Banakar, Marwedel & al. 2002 ] 

34% smaller area than caches of same capacity 

40% lower power consumption than caches of same capacity 

18% less clock cycles for a knapsack allocation algorithm 

     (the access time of an SPM is typically within 1 clock cycle) 

Low-Power Memory Management 

in embedded 

systems 



No need to check at run time the availability of data in the SPM 

No need of comparators, of the miss/hit acknowledging logic 

Scratchpad memories (SPMs) are on-chip SRAMs 

Low-Power Memory Management 

The mapping of data to the SPM can be done statically 



C[0] = 0;   //  input:  int A[256][256] 

for (int i=64; i<192; ++i) { 

    for (int j=64; j<192; ++j) { 

         B[i][j][0] = 0; 

         for (int k=i–64; k<=i+64; ++k) { 

             for (int l=j–64; k<=j+64; ++l) { 

     B[i][j][129*k – 129*i + l – j + 8321] = A[i][j]  

  – A[k][l] + B[i][j][129*k – 129*i + l – j + 8320] ; 

 } 

         } 

         C[128*i + j – 8255] = B[i][j][16641] + C[128*i + j – 8256] ; 

   } 

} 

out = C[16384] ;  //  output:  out 

Example of Behavioral Specification 



Signal Assignment to Memory Layers 

Map of memory accesses to signal’s A index space 

 



33,025 accesses 

Signal Assignment to Memory Layers 

Map of memory accesses to signal’s A index space 

 

24,961 accesses 

1 access 

8,192 accesses 



Signal Assignment to Memory Layers 

The problem 

the dynamic energy consumption per memory access is 

much smaller for the SPM than for external DRAM 

the arrays may have very non-uniform access patterns  

(the elements A[i][j] have 1 – 33,025 accesses) 

an array may need a lot of storage: it may not be possible 

to store it all within the SPM (array A needs 64 Kbytes) 

    

 
Which array elements should be stored on-chip 

such that the (static+dynamic) energy consumption  

in the multi-layer memory subsystem be minimized ? 
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Signal Assignment: the Model 

A[x(i, j, k)][y(i, j, k)] 
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Signal Assignment: the Model 

The array references 

represented as 

(linearly-bounded) 

lattices 

The most intensely-accessed parts of an array 

are typically covered by several array references 

Intuitive 

observation 

Intersect the 

array references ! 

LBL 



Intersect lattices ! 

LBL1   LBL2 
U 

LBL 

LBL1 =  { x = T1·i1 + u1  |  A1·i1 >= b1 } 

LBL2 =  { x = T2·i2 + u2  |  A2·i2 >= b2 } 

T1·i1 + u1  =  T2·i2 + u2 

Diophantine system of eqs. 

{ A1·i1 >= b1 ,  A2·i2 >= b2 } 

New polytope 

Signal Assignment: the Model 



Signal Assignment: the Model 

Part of a DAG representing two lattices 

whose intersection is not empty 
(the difference may comprise several lattices) 



DAG of LBLs 
 The nodes without 

predecessors represent the 

partitions of the array space 



Partitioning the Array Space 

The central part M 

of the array space 

of signal A 

receives 78% of 

the memory 

accesses 



Signal Assignment to Memory Layers 

focus on the LBLs whose assignment to the SPM layer 

would yield the largest energy reduction 

an LBL may need a lot of storage: it may not be possible 

to store it all within the SPM (lattice M needs 16 Kbytes) 

    

 What is to be done if the size of the SPM is too small 

relative to the storage requirement of a lattice ? 

The Assignment Algorithm 



Slicing the Large Lattices 

Fine-grain 

lattices of 

128 bytes 

The lattice M of 

16Kbytes is split 



Signal Assignment to Memory Layers 

The Assignment Algorithm 

for  ( each signal in the application code ) 

     partition its array space into disjoint LBLs ; 

initially, assign all the disjoint lattices L to the DRAM ; 

     size(DRAM) = S size(L) ;      size(SPM) = 0 ; 

for ( each disjoint lattice L )  compute the energy reduction if  L is assigned to SPM ; 

do {  select the lattice L yielding the largest reduction of energy ; 

         if  ( size(SPM) + size(L) <= MAX_SPM_SIZE )  

              assign L to the SPM:  size(SPM) += size(L);   size(DRAM) -= size(L) ; 

              update the energy benefits of all the lattices still assigned to the DRAM ; 

         else 

              “slice” the lattice L relative to its next iterator and replace L by these LBLs ; 

              compute the energy benefits of these new ‘finer-granularity’ lattices ; 

}  until ( MAX_SPM_SIZE is reached  ||  the max level of “slicing” is reached ) ; 



CACTI 6.5 

Technology 32 nm 

Frequency 400 MHz 

The graphs of energy consumption by the SPM, 

DRAM, and the 2-layer memory system 

storing the array A of 64 Kbytes 

87.94 mJ 

52.30 mJ 

3.06 mJ 



The graphs of total access time to the SPM, to 

the DRAM, and to the 2-layer memory system 

storing the array A of 64 Kbytes 

907.55 ms 

521.16 ms 

246.48 ms 

CACTI 6.5 

Technology 32 nm 



Energy-aware SPM Banking 

 Motivation 

 Hardware cost overhead 

 Energy overhead 

    (but also time and area overhead) 

Reduction of static & dynamic 

      energy consumption with the 

      size of the memory banks 

Possibility of turning on/off  

      the banks independently 



Energy-aware SPM Banking 

0 

0 k n-1 k-1 

EBank1+ EBank2 + DE12 < EMonolithic_SPM 

Beneficial partitioning 

n-1 

 Bank 1  Bank 2 

Monolithic SPM 



Architecture with 

monolithic SPM 

Architecture with SPM 

partitioned in 3 banks 

On-chip Memory Banking 

DE13 



Energy-aware SPM Banking 

0 k n-1 k-1 

Mink{EBank1+ EBank2 }+ DE12 

Optimal  2-way partitioning 

 Bank 1  Bank 2 

Exhaustive exploration with backtracking 

Benini et al.,  IEEE  Trans. CAD 2002 

Using recursion Optimal  M-way partitioning 



Exhaustive exploration with backtracking 

Benini et al.,  IEEE  Trans. CAD 2002 

for M = 2, 3 : optimal solutions 

for M = 4 : optimal solution 

for M > 4 

CPU:  usually over 1 hour 

Partitions:   many billions 

Exploration using dynamic programming 

Angiolini et al.,  IEEE  Trans. CAD 2005 

Advantage:  no need of presetting M 

Disadvantage:  a huge data structure 

(matrix:  | SPM | x | TraceAccesses | ) 



Energy-aware SPM Banking 

  Input 1 maximum number of banks M 

  Input 2 

array  [DE12 , DE23 , … , DEM-1,M ] 

     whose elements DEk,k+1 are energy overheads 

     implied by moving from k to k+1 banks  

  Input 3 array of SPM addresses where the lattices of 

     signals are mapped into the on-chip memory 

  Input 4 array of R/W accesses for the on-chip lattices 

  Output array of energetically-optimal bank boundaries 

The Banking Algorithm 



  First bank:  

[addr0 , addri ] 

Partition the address space [addri , addrn ] in at most M-1 banks 

Start from monolithic SPM 

Energy-aware SPM Banking 

The Banking Algorithm 



Last bank: [addri , addrn ] 

A better solution found !! 

Partition the address space 

[addrk , addrn ] 

in at most M-m banks 

Bank m: [addri , addrk ]  

Energy-aware SPM Banking 



Energy-aware SPM banking: the decrease of the SPM energy 

consumption as different SPM partitions are analyzed 



Application Scalars 
Memory 

accesses 

Energy 

DRAM 

[mJ] 

SPM 

size 

Energy 

savings 

DRAM+SPM           

Energy 

savings 

[Brockmeyer] 

CPU 

[sec] 

Dynamic 

programming 
21,082,751 83,834,000 2,515,020 32K 56.1 % 35.1 % 36.2 

Motion 

estimation 
265,633 864,900 25,947 1K 50.7 % 28.6 % 12.5 

Durbin’s 

algorithm 
252,499 

 

1,004,993 

 

30,150 512 62.2 % 37.4 % 8.9 

 

SVD 

updating 

 

3,045,447 29,500,000 885,000 16K 46.5 % 28.2 % 24.5 

Experimental Results on Signal Assignment to the 

On-Chip and Off-Chip Memory Layers 

(dynamic + static energy evaluations: CACTI  6.5) 



Application 
Address 

space 

CPU 

Full_Expl. 

(M=4)  [sec] 

CPU  

[sec] 

M=8 

Energy savings 

vs. Full_Expl. 

(M=4)         

Energy savings 

vs. monolithic 

SPM (M=8) 

Motion detection 9,600 5,289 32.2 9.69 % 55.78 % 

Motion 

estimation 
1,024 736 5.3 7.51 % 47.21 % 

Durbin’s 

algorithm 
512 247 2.3 7.28% 46.52 % 

SVD updating 16,384 7,524 65.2 10.94 % 59.88 % 

Experimental Results on  

Energy-Aware SPM Banking 

Experimental Results 



Conclusions 

Integrated CAD methodology for system-level exploration, 

focusing on memory management tasks 

Energy-aware data assignment technique based on a library of 

operations with integral polyhedra and lattices 

The assignment algorithm could be extended for an arbitrary 

number of layers of memory hierarchy if the functions of 

energy spent per access and static power versus memory size 

were available for each layer 

Energy-aware banking algorithm based on the computation of 

the intensity of memory accesses in the index space of arrays 




