Syntax-Guided Synthesis

Rajeev Alur

Talk Outline

Program Verification and SMT Solvers

- Motivation for Syntax-Guided Synthesis
- Formalization of SyGuS
- Solution Strategies
- Conclusions + SyGuS Competition
Program Verification

- Does a program \(P \) meet its specification \(\varphi \) ?

- Historical roots: Hoare logic for formalizing correctness of structured programs (late 1960s)

- Early examples: sorting, graph algorithms

- Provides calculus for pre/post conditions of structured programs
Sample Proof: Selection Sort

```plaintext
SelectionSort(int A[], n) {
    i1 := 0;
    while (i1 < n-1) {
        v1 := i1;
        i2 := i1 + 1;
        while (i2 < n) {
            if (A[i2] < A[v1])
                v1 := i2;
            i2++;
        }
        swap(A[i1], A[v1]);
        i1++;
    }
    return A;
}
```

post: \(\forall k : 0 \leq k < n \Rightarrow A[k] \leq A[k + 1] \)

Invariant:
- \(\forall k1, k2. \ 0 \leq k1 < k2 < n \land k1 < i1 \Rightarrow A[k1] \leq A[k2] \)
- \(i1 < i2 \land i1 \leq v1 < n \land (\forall k1, k2. \ 0 \leq k1 < k2 < n \land k1 < i1 \Rightarrow A[k1] \leq A[k2]) \land (\forall k. \ i1 \leq k < i2 \land k \geq 0 \Rightarrow A[v1] \leq A[k]) \)
Towards Practical Program Verification

1. Focus on simpler verification tasks:
 - Not full functional correctness, just absence of specific errors
 - Success story: Array accesses are within bounds

2. Provide automation as much as possible
 - Program verification is undecidable
 - Programmer asked to give annotations when absolutely needed
 - Consistency of annotations checked by SMT solvers

3. Use verification technology for synergistic tasks
 - Directed testing
 - Bug localization
Selection Sort: Array Access Correctness

```c
SelectionSort(int A[], n) {
    i1 := 0;
    while (i1 < n-1) {
        v1 := i1;
        i2 := i1 + 1;
        while (i2 < n) {
            assert (0 ≤ i2 < n) & (0 ≤ v1 < n)
            if (A[i2] < A[v1])
                v1 := i2;
            i2++;
        }
        assert (0 ≤ i1 < n) & (0 ≤ v1 < n)
        swap(A[i1], A[v1]);
        i1++;
    }
    return A;
}
```
Selection Sort: Proving Assertions

```c
SelectionSort(int A[], n) {
    i1 := 0;
    while (i1 < n - 1) {
        v1 := i1;
        i2 := i1 + 1;
        while (i2 < n) {
            assert 0 ≤ i2 < n & 0 ≤ v1 < n
            if (A[i2] < A[v1])
                v1 := i2;
            i2++;
        }
        assert (0 ≤ i1 < n) & 0 ≤ v1 < n
        swap(A[i1], A[v1]);
        i1++;
    }
    return A;
}
```

Check validity of formula

\((i1 = 0) \& (i1 < n-1) \Rightarrow (0 \leq i1 < n)\)

And validity of formula

\((0 \leq i1 < n) \& (i1' = i1 + 1) \& (i1' < n-1) \Rightarrow (0 \leq i1' < n)\)
Discharging Verification Conditions

- Check validity of

 \((i_1 = 0) \land (i_1 < n-1) \Rightarrow (0 \leq i_1 < n) \)

- Reduces to checking satisfiability of

 \((i_1 = 0) \land (i_1 < n-1) \land \neg(0 \leq i_1 < n) \)

- Core computational problem: checking satisfiability

- Classical satisfiability: SAT
 - Boolean variables + Logical connectives

- SMT: Constraints over typed variables
 - \(i_1 \) and \(n \) are of type Integer or BitVector[32]
A Brief History of SAT

- Fundamental Thm of CS: SAT is NP-complete (Cook, 1971)
 - Canonical computationally intractable problem
 - Driver for theoretical understanding of complexity

- Enormous progress in scale of problems that can be solved
 - Inference: Discover new constraints dynamically
 - Exhaustive search with pruning
 - Algorithm engineering: Exploit architecture for speed-up

- SAT solvers as the canonical computational hammer!

```
1952 Quine ≈ 10 var
1960 DP ≈ 10 var
1962 DLL ≈ 10 var
1986 BDDs ≈ 100 var
1988 SOCRATES ≈ 300 var
1992 GSAT ≈ 300 var
1994 Hannibal ≈ 3k var
1996 GRASP ≈ 1k var
1996 Stålmarck ≈ 1000 var
1996 SATO ≈ 1k var
2001 Chaff ≈ 10k var
2002 Berkmin ≈ 10k var
2005 MiniSAT ≈ 20k var
2005 MiniSAT ≈ 20k var
```
SMT: Satisfiability Modulo Theories

- Computational problem: Find a satisfying assignment to a formula
 - Boolean + Int types, logical connectives, arithmetic operators
 - Bit-vectors + bit-manipulation operations in C
 - Boolean + Int types, logical/arithmetic ops + Uninterpreted functs

- “Modulo Theory”: Interpretation for symbols is fixed
 - Can use specialized algorithms (e.g. for arithmetic constraints)

- Progress in improved SMT solvers

Little Engines of Proof

SAT; Linear arithmetic; Congruence closure
SMT Success Story

SMT Solvers ↔ Verification Tools

CBMC → SAGE → VCC → Spec#

SMT-LIB Standardized Interchange Format (smt-lib.org)
 Problem classification + Benchmark repositories
 LIA, LIA_UF, LRA, QF_LIA, ...

+ Annual Competition (smt-competition.org)

Z3 → Yices → CVC4 → MathSAT5
Talk Outline

- Motivation for Syntax-Guided Synthesis
 - Formalization of SyGuS
 - Solution Strategies
 - Conclusions + SyGuS Competition
Program Synthesis

- **Classical: Mapping a high-level (e.g. logical) specification to an executable implementation**

- **Benefits of synthesis:**
 - Make programming easier: Specify “what” and not “how”
 - Eliminate costly gap between programming and verification

- **Deductive program synthesis:** Constructive proof of \(\exists f. \varphi \)
Verification

Program Verification: Does P meet spec φ?

SMT: Is φ satisfiable?

SMT-LIB/SMT-COMP
Standard API
Solver competition

Synthesis

Program Synthesis: Find P that meets spec φ

Syntax-Guided Synthesis

Plan for SyGuS-comp
Given a program P, find a “better” equivalent program P'

```
multiply (x[1,n], y[1,n]) {
    x1 = x[1,n/2];
    x2 = x[n/2+1, n];
    y1 = y[1, n/2];
    y2 = y[n/2+1, n];

    a = x1 * y1;
    b = shift( x1 * y2, n/2);
    c = shift( x2 * y1, n/2);
    d = shift( x2 * y2, n);

    return ( a + b + c + d)
}
```

Replace with equivalent code with only 3 multiplications
Automatic Invariant Generation

SelectionSort(int A[], n)
 i1 := 0;
 while (i1 < n-1) {
 v1 := i1;
 i2 := i1 + 1;
 while (i2 < n) {
 if (A[i2] < A[v1])
 v1 := i2;
 i2++;
 }
 swap(A[i1], A[v1]);
 i1++;
 }
 return A;

post: ∀k : 0 ≤ k < n ⇒ A[k] ≤ A[k + 1]

Invariant: ?
Invariant: ?
Invariant: ?
Template-based Automatic Invariant Generation

SelectionSort(int A[],n) {
 i1 := 0;
 while (i1 < n-1) {
 v1 := i1;
 i2 := i1 + 1;
 while (i2 < n) {
 if (A[i2] < A[v1])
 v1 := i2;
 i2++;
 }
 swap(A[i1], A[v1]);
 i1++;
 }
 return A;
}

post: \(\forall k : 0 \leq k < n \Rightarrow A[k] \leq A[k + 1] \)

Invariant:
\(\forall k1,k2. \ ? \land ? \)

Invariant:
\(? \land ? \land \\
(\forall k1,k2. ? \land ?) \land (\forall k. ? \land ?) \)

Constraint solver
Template-based Automatic Invariant Generation

SelectionSort(int A[], n) {
 i1 := 0;
 while (i1 < n-1) {
 v1 := i1;
 i2 := i1 + 1;
 while (i2 < n) {
 if (A[i2] < A[v1])
 v1 := i2;
 i2++;
 }
 swap(A[i1], A[v1]);
 i1++;
 }
 return A;
}

post: ∀k : 0 ≤ k < n ⇒ A[k] ≤ A[k + 1]

Invariant:
∀k1, k2. 0 ≤ k1 < k2 < n ∧
 k1 < i1 ⇒ A[k1] ≤ A[k2]

Invariant:
i1 < i2 ∧
i1 ≤ v1 < n ∧
(∀k1, k2. 0 ≤ k1 < k2 < n ∧
 k1 < i1 ⇒ A[k1] ≤ A[k2]) ∧
(∀k. i1 ≤ k < i2 ∧
 k ≥ 0 ⇒ A[v1] ≤ A[k])

Err = 0.0;
for(t = 0; t<T; t+=dT){
 if(stage==STRAIGHT){
 if(t > ??) stage= INTURN;
 }
 if(stage==INTURN){
 car.ang = car.ang - ??;
 if(t > ??) stage= OUTTURN;
 }
 if(stage==OUTTURN){
 car.ang = car.ang + ??;
 if(t > ??) break;
 }
 simulate_car(car);
 Err += check_collision(car);
}
Err += check_destination(car);

Backup straight
When to start turning?
How much to turn?
Straighten
The program requires 3 changes:

- In the return statement `return deriv` in line 5, replace `deriv` by `[0].`
- In the comparison expression `(poly[e] == 0)` in line 7, change `(poly[e] == 0)` to `False.`
- In the expression `range(0, len(poly))` in line 6, replace `0` by `1.`
FlashFill: Programming by Examples

Ref: Gulwani (POPL 2011)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(425)-706-7709</td>
<td>425-706-7709</td>
</tr>
<tr>
<td>510.220.5586</td>
<td>510-220-5586</td>
</tr>
<tr>
<td>1 425 235 7654</td>
<td>425-235-7654</td>
</tr>
<tr>
<td>425 745-8139</td>
<td>425-745-8139</td>
</tr>
</tbody>
</table>

- Infers desired Excel macro program
- Iterative: user gives examples and corrections
- Being incorporated in next version of Microsoft Excel
Talk Outline

- Formalization of SyGuS
- Solution Strategies
- Conclusions + SyGuS Competition
Syntax-Guided Program Synthesis

- Core computational problem: Find a program P such that
 1. P is in a set E of programs (syntactic constraint)
 2. P satisfies spec φ (semantic constraint)

- Common theme to many recent efforts
 - Sketch (Bodik, Solar-Lezama et al)
 - FlashFill (Gulwani et al)
 - Super-optimization (Schkufza et al)
 - Invariant generation (Many recent efforts...)
 - TRANSIT for protocol synthesis (Udupa et al)
 - Oracle-guided program synthesis (Jha et al)
 - Implicit programming: Scala$^\text{Z3}$ (Kuncak et al)
 - Auto-grader (Singh et al)

But no way to share benchmarks and/or compare solutions
Syntax-Guided Synthesis (SyGuS) Problem

- **Fix a background theory** T: fixes types and operations

- **Function to be synthesized**: name f along with its type
 - *General case*: multiple functions to be synthesized

- **Inputs to SyGuS problem**:
 - **Specification** φ
 - Typed formula using symbols in T + symbol f
 - **Set E of expressions** given by a context-free grammar
 - Set of candidate expressions that use symbols in T

- **Computational problem**:
 - Output e in E such that $\varphi[f/e]$ is valid (in theory T)
SyGuS Example

- Theory QF-LIA
 Types: Integers and Booleans
 Logical connectives, Conditionals, and Linear arithmetic
 Quantifier-free formulas

- Function to be synthesized: \(f (\text{int} \ x, \text{int} \ y) : \text{int} \)

- Specification: \((x \leq f(x,y)) \land (y \leq f(x,y)) \land (f(x,y) = x \lor f(x,y) = y)\)

- Candidate Implementations: Linear expressions
 \(\text{LinExp} := x \mid y \mid \text{Const} \mid \text{LinExp} + \text{LinExp} \mid \text{LinExp} - \text{LinExp} \)

- No solution exists
SyGuS Example

- Theory QF-LIA

- Function to be synthesized: \(f (\text{int } x, \text{int } y) : \text{int} \)

- Specification: \((x \leq f(x,y)) \& (y \leq f(x,y)) \& (f(x,y) = x \mid f(x,y) = y)\)

- Candidate Implementations: Conditional expressions with comparisons

\[
\text{Term} := x \mid y \mid \text{Const} \mid \text{If-Then-Else} (\text{Cond}, \text{Term}, \text{Term}) \\
\text{Cond} := \text{Term} \leq \text{Term} \mid \text{Cond} \& \text{Cond} \mid \sim \text{Cond} \mid (\text{Cond})
\]

- Possible solution:
 \text{If-Then-Else} (x \leq y, y, x)
Let Expressions and Auxiliary Variables

- Synthesized expression maps directly to a straight-line program
- Grammar derivations correspond to expression parse-trees
- How to capture common subexpressions (which map to aux vars)?
- Solution: Allow “let” expressions

Candidate-expressions for a function $f(int x, int y): int$
- $T := (let [z = U] in z + z)$
- $U := x | y | Const | (U) | U + U | U*U$
Optimality

- Specification for \(f(\text{int } x) : \text{int} \):
 \[x \leq f(x) \land -x \leq f(x) \]

- Set \(E \) of implementations: Conditional linear expressions

- Multiple solutions are possible
 - If-Then-Else \((0 \leq x, x, 0)\)
 - If-Then-Else \((0 \leq x, x, -x)\)

- Which solution should we prefer?
 Need a way to rank solutions (e.g. size of parse tree)
Invariant Generation as SyGuS

Goal: Find inductive loop invariant automatically

Function to be synthesized
Inv (bool x, bool z, int a, int b) : bool

Compile loop-body into a logical predicate
Body(x,y,z,a,b,c, x',y',z',a',b',c')

Specification:
Inv & Body & Test' ⇒ Inv'

Template for set of candidate invariants
Term := a | b | Const | Term + Term | If-Then-Else (Cond, Term, Term)
Cond := x | z | Cond & Cond | ~ Cond | (Cond)
Program Optimization as SyGuS

- Type matrix: 2x2 Matrix with Bit-vector[32] entries
 Theory: Bit-vectors with arithmetic

- Function to be synthesized f(matrix A, B) : matrix

- Specification: f(A,B) is matrix product
 ...

- Set of candidate implementations
 Expressions with at most 7 occurrences of *
 Unrestricted use of +
 let expressions allowed
Program Sketching as SyGuS

- Sketch programming system
 - C program P with ?? (holes)
 - Find expressions for holes so as to satisfy assertions

- Each hole corresponds to a separate function symbol

- Specification: P with holes filled in satisfies assertions
 - Loops/recursive calls in P need to be unrolled fixed no of times

- Set of candidate implementations for each hole:
 - All type-consistent expressions

- Not yet explored:
 - How to exploit flexibility of separation betn syntactic and semantic constraints for computational benefits?
Talk Outline

Solution Strategies

Conclusions + SyGuS Competition
Solving SyGuS

- Is SyGuS same as solving SMT formulas with quantifier alternation?

- SyGuS can sometimes be reduced to Quantified-SMT, but not always
 - Set E is all linear expressions over input vars x, y
 - SyGuS reduces to Exists a,b,c. Forall X. \(\varphi [f/ ax+by+c] \)
 - Set E is all conditional expressions
 - SyGuS cannot be reduced to deciding a formula in LIA

- Syntactic structure of the set E of candidate implementations can be used effectively by a solver

- Existing work on solving Quantified-SMT formulas suggests solution strategies for SyGuS
SyGuS as Active Learning

Concept class: Set E of expressions

Examples: Concrete input values
Counter-Example Guided Inductive Synthesis

- Concrete inputs I for learning $f(x,y) = \{ (x=a,y=b), (x=a',y=b'), \ldots \}$

- Learning algorithm proposes candidate expression e such that $\varphi[f/e]$ holds for all values in I

- Check if $\varphi[f/e]$ is valid for all values using SMT solver

- If valid, then stop and return e

- If not, let $(x=\alpha, y=\beta, \ldots)$ be a counter-example (satisfies $\sim \varphi[f/e]$)

- Add $(x=\alpha, y=\beta)$ to tests I for next iteration
CEGIS Example

- Specification: \((x \leq f(x,y)) \& (y \leq f(x,y)) \& (f(x,y) = x \mid f(x,y) = y)\)

- Set E: All expressions built from \(x,y,0,1,\) Comparison, \(+, \) If-Then-Else

Examples = \{ \}

Learning Algorithm

Example (\(x=0, y=1\))

Candidate \(f(x,y) = x\)

Verification Oracle
CEGIS Example

- **Specification:** \((x \leq f(x, y)) \land (y \leq f(x, y)) \land (f(x, y) = x \lor f(x, y) = y)\)

- **Set E:** All expressions built from \(x, y, 0, 1,\) Comparison, \(+,\) If-Then-Else

Examples = \(\{(x=0, y=1)\}\)

Candidate

\(f(x, y) = y\)

Example

\((x=1, y=0)\)
CEGIS Example

- **Specification:** \((x \leq f(x,y)) \& (y \leq f(x,y)) \& (f(x,y) = x \mid f(x,y) = y)\)

- **Set E:** All expressions built from \(x, y, 0, 1, \text{Comparison}, +, \text{If-Then-Else}\)

 Examples =
 \[
 \{(x=0, y=1), (x=1, y=0), (x=0, y=0), (x=1, y=1)\}
 \]

- **Candidate**

 ITE \((x \leq y, y, x)\)

- **Learning Algorithm**

- **Verification Oracle**

- **Success**
SyGuS Solutions

- CEGIS approach (Solar-Lezama, Seshia et al)

- Related work: Similar strategies for solving quantified formulas and invariant generation

- Coming up: Learning strategies based on:
 - Enumerative (search with pruning): Udupa et al (PLDI’13)
 - Symbolic (solving constraints): Gulwani et al (PLDI’11)
 - Stochastic (probabilistic walk): Schkufza et al (ASPLOS’13)
Enumerative Learning

- Find an expression consistent with a given set of concrete examples
- Enumerate expressions in increasing size, and evaluate each expression on all concrete inputs to check consistency

- Key optimization for efficient pruning of search space:
 - Expressions e_1 and e_2 are equivalent if $e_1(a,b)=e_2(a,b)$ on all concrete values $(x=a, y=b)$ in Examples
 - $(x+y)$ and $(y=x)$ always considered equivalent
 - If-Then-Else $(0 \leq x, e_1, e_2)$ considered equivalent to e_1 if in current set of Examples x has only non-negative values
 - Only one representative among equivalent subexpressions needs to be considered for building larger expressions

- Fast and robust for learning expressions with ~ 15 nodes
Symbolic Learning

- Use a constraint solver for both the synthesis and verification steps.

- Each production in the grammar is thought of as a component. Input and Output ports of every component are typed.

- A well-typed loop-free program comprising these component corresponds to an expression DAG from the grammar.
Symbolic Learning

- Start with a library consisting of some number of occurrences of each component.

![Diagram with symbols: x, x, y, y, 0, 1, +, +, >=, ITE]

- **Synthesis Constraints:**
 - Shape is a DAG, Types are consistent
 - Spec $\varphi[f/e]$ is satisfied on every concrete input values in Examples

- Use an SMT solver (Z3) to find a satisfying solution.

- If synthesis fails, try increasing the number of occurrences of components in the library in an outer loop.
Stochastic Learning

- Idea: Find desired expression \(e \) by probabilistic walk on graph where nodes are expressions and edges capture single-edits.

- Metropolis-Hastings Algorithm: Given a probability distribution \(P \) over domain \(X \), and an ergodic Markov chain over \(X \), samples from \(X \).

- Fix expression size \(n \).
 - \(X \) is the set of expressions \(E_n \) of size \(n \).
 - \(P(e) \propto \text{Score}(e) \) (“Extent to which \(e \) meets the spec \(\phi \)”)

- For a given set \(I \) of concrete inputs, \(\text{Score}(e) = \exp(-0.5 \text{Wrong}(e)) \), where \(\text{Wrong}(e) = \text{No of examples in } I \text{ for which } \phi[f/e] \).

- \(\text{Score}(e) \) is large when \(\text{Wrong}(e) \) is small. Expressions \(e \) with \(\text{Wrong}(e) = 0 \) more likely to be chosen in the limit than any other expression.
Initial candidate expression e sampled uniformly from E_n

When $\text{Score}(e) = 1$, return e

Pick node v in parse tree of e uniformly at random. Replace subtree rooted at e with subtree of same size, sampled uniformly

With probability $\min\{1, \frac{\text{Score}(e')}{\text{Score}(e)}\}$, replace e with e'

Outer loop responsible for updating expression size n
Benchmarks and Implementation

- Prototype implementation of Enumerative/Symbolic/Stochastic CEGIS

- Benchmarks:
 - Bit-manipulation programs from Hacker's delight
 - Integer arithmetic: Find max, search in sorted array
 - Challenge problems such as computing Morton's number

- Multiple variants of each benchmark by varying grammar

- Results are not conclusive as implementations are unoptimized, but offers first opportunity to compare solution strategies
Evaluation: Integer Benchmarks

Relative Performance of Integer Benchmarks

- **array_search_2.sl**
- **array_search_3.sl**
- **array_search_4.sl**
- **array_search_5.sl**
- **max2.sl**
- **max3.sl**

approximate time in sec.

- **Enumerative**
- **Stochastic (median)**
- **Symbolic**
Evaluation 2: Bit-Vector Benchmarks

Relative Performance of Bit-vector and Boolean Problems

- Parity-AIG-d0.sl
- Parity-NAND-d0.sl
- Parity.sl
- Parity-AIG-d1.sl
- Parity-NAND-d1.sl
- zmodern-d4.sl
- zmodern-d5.sl

Y-axis: approximate time in sec.

Legend:
- Enumerative
- Stochastic (median)
- Symbolic
Evaluation 3: Hacker’s Delight Benchmarks

Relative Performance on a Sample of Hacker's Delight Benchmarks

- Enumerative
- Stochastic (median)
- Symbolic

approximate time in sec.
Evaluation Summary

- **Enumerative CEGIS** has best performance, and solves many benchmarks within seconds
 - Potential problem: Synthesis of complex constants

- **Symbolic CEGIS** is unable to find answers on most benchmarks
 - **Caveat**: Sketch succeeds on many of these

- **Choice of grammar** has impact on synthesis time
 - When E is set of all possible expressions, solvers struggle

- None of the solvers succeed on some benchmarks
 - **Morton constants**, Search in integer arrays of size > 4

- **Bottomline**: Improving solvers is a great opportunity for research!
Talk Outline

- Conclusions + SyGuS Competition
SyGuS Recap

- **Contribution:** Formalization of syntax-guided synthesis problem
 - Not language specific such as Sketch, Scala\(^\text{Z3},\ldots\)
 - Not as low-level as (quantified) SMT

- **Advantages compared to classical synthesis**
 1. Set E can be used to restrict search (computational benefits)
 2. Programmer flexibility: Mix of specification styles
 3. Set E can restrict implementation for resource optimization
 4. Beyond deductive solution strategies: Search, inductive inference

- Prototype implementation of 3 solution strategies

- Initial set of benchmarks and evaluation
(set-logic LIA)
(synth-fun max2 ((x Int) (y Int)) Int
 ((Start Int (x y 0 1
 (+ Start Start)
 (- Start Start)
 (ite StartBool Start Start)))
 (StartBool Bool ((and StartBool StartBool)
 (or StartBool StartBool)
 (not StartBool)
 (<= Start Start))))

(declare-var x Int)
(declare-var y Int)
(constraint (>= (max2 x y) x))
(constraint (>= (max2 x y) y))
(constraint (or (= x (max2 x y)) (= y (max2 x y))))
(check-synth)
Plan for SyGuS-Comp

- Proposed competition of SyGuS solvers at FLoC, July 2014

- Organizers: Alur, Fisman (Penn) and Singh, Solar-Lezama (MIT)

- Website: excape.cis.upenn.edu/Synth-Comp.html

- Mailing list: synthlib@cis.upenn.edu

Call for participation:
- Join discussion to finalize synth-lib format and competition format
- Contribute benchmarks
- Build a SyGuS solver
SyGuS Solvers ↔ Synthesis Tools

- Program optimization
- Program sketching
- Programming by examples
- Invariant generation

SyGuS Standardized Interchange Format
- Problem classification + Benchmark repository
- + Solvers competition

Potential Techniques for Solvers:
- Learning, Constraint solvers, Enumerative/stochastic search

Little engines of synthesis?