
Multiform Logical Time for
MeMo-Codesign

Robert de Simone
Inria Sophia-M®diterran®e & Universit® Code dôAzur

INTRODUCTION
Today

 14th ACM-IEEE International Conference on Formal Methods and Models for

(Embedded) System Design

Until 2013 was Formal Methods and Models for (Hardware-Software) Codesign

a) Hardware Design has traditional Models for Synthesis (up to a point)

b) System Engineering has its methodologies and diagrams

But Software Modeling and Formal Methods do not really match mainstream

Software Engineering practices

So what is relevant about Software Modeling for Embedded/CPS system design?

Or what could be ?

MemoCode 2016 - 2

OUTLINE

1. System-level, Model-driven, Platform-Based design

2. Around Hardware CAD and Synthesis

3. Around Software Engineering (MoCs vs MoPs)

4. A Clock Constraint Specification Language

5. Conclusion and discussion

MemoCode 2016 - 3

System-level, Model-driven,

Platform-Based design

Multiviews, Cyber-Physical and Systems of Systems

1

Y-Chart design approach

MemoCode 2016 - 5

Application

model
Architecture

model

mapping

Also branded as: Application / Architecture Adaptation (AAA)

where adaptation means optimized mapping,

 and mapping covers allocation in space and scheduling in time

Actually used for design space exploration in distinct engineering purposes, at various

modeling levels.

Targeting Hardware: Platform-Based Design

MemoCode 2016 - 6

Application

model

mapping

platform

features

Architecture

model

the version of Alberto Sangiovanni-Vincentelli

(UC Berkeley + MARCO Giga-Scale Silicon Research Center

Application model is here only to provide typical use cases (booting Linux, one-day

battery life) only to exercice the platform and accumulate non-functional information

(typically by simulation in SystemC)

Virtual Platforms and Virtual prototypes assembled by Hardware Architects.

Provisions Requirements Provisions Requirements

Application / Architecture Adaptation (AAA)

MemoCode 2016 - 7

mapping

Architecture-aware

application

Here mapping corresponds to abstract compilation onto parallel heterogeneous architectures.

Application

model

Architecture

model

Typically used in Real-Time Scheduling and Reactive programming, to get logical timing

guarantees

Q: can clever mapping make a non time-predictable platform act more predictably ?

Assume / guarantee approach: one needs

ÅWorst-Case Execution Time WCET

ÅWorst-Case Communication Time WCCT

hopefully accurate (low variability, Precision Timed)

.

Interplay between computations and communications

most important (overlap and conflicts)

Provisions Requirements

A two-storey approach

MemoCode 2016 - 8

mapping

The AAA approach cannot span

the complete design

Predicable WCET and WCCT

computed at a component level

(which?)

Working at Ground-level more

messy (less abstract)

Ą needs to be applied on regular

subcases only.

Level separation may fluctuate

to adjust the approach

Application

model

Architecture

model

Complex appli Full platform

First Floor

Ground Floor

Task
Processing

Element
mapped

Core or thread Regular Library kernels

Adjust modeling to analysis (and vice-versa)

MemoCode 2016 - 9

Before we can get this (in a realistic fashion?) we need more feedback

How are similar things done elsewhere ?

Can we borrow, compare, contradict ???

Letôs embark on a Tour.

Provisions Requirements Provisions Requirements

mapping

Application

model

Architecture

model

What we want:

Logical clock constraints + simple formulas between non-functional values

Task Graphs

and MoCCs
Block diagrams with

interconnect fabric

description

Automatic solver or abstract (regular) simulation for optimization

+ accurate synthetized

estimation (WCET/WCCT of

consistent task kernels as

building blocks

A hardware/software stack

MemoCode 2016 - 10

System Engineering

Formal Methods and Concurrency Theory (MoCCs)

(Domain Specific) Language design

Parallel compilation

Runtime execution and Optimization

Simulation and Worst-Case Execution Time

Hardware Abstraction Layer

research communities

Example model-driven platform-based AAA environments

MemoCode 2016 - 11

Early system-level design stages (specification)

Å SysML/MARTE (AADL)

Å ARCADIA / CAPELLA

Å Amalthea

Hardware Virtual platforms (MoCs and SoCs)

Å Synopysys MCO Platform Architect

Å MetroPolis

Å StreamIt/Raw (Tilera)

Å SDF3/Aelite

Å ForSyDE/Nostrum

Å SigmaC/Kalray

Real-Time Scheduling

Å AADL (SysML/MARTE)

Å SynDEx

Much more often, the combination remains implicité

System Engineering Design Flow: Arcadia / Capella example

MemoCode 2016 - 12

requirement elicitation

functional specification

refinement

architectural

specification refinement

System Engineering Design Flow: Arcadia / Capella example

MemoCode 2016 - 13

Example:

Å (money) cost

Å mass

Å reliability (fault tolerance)

Å security (mixed-criticality)

But what if dynamics involved ?

Mode&State changes

Allocation made by user, on

software and hardware architectur

Quality of allocation evaluated by

computing simple cost functions:

Excel-like spreadsheets mostly

formulas ăĄ constraints

SysML/MARTE

MemoCode 2016 - 14

Non-Functional

Properties

Generic Resource

(archi)

Generic Component

(appli)

Hardware

(HAL)
Software

(firmware) Schedulability
Performance

Repetitive

structure

SysML parametrics: formulas expressing physical laws (or CPS ones)

AADL

MemoCode 2016 - 15

User provides allocations

Analysis tools compute end-to-end latency and other performance measurements

Application

Architecture

Allocation

Example: Amalthea (Bosch et al)

MemoCode 2016 - 16

Example:

Synopsys Platform Architect

MemoCode 2016 - 17

Many other attempts:

Metropolis

StreamIt/Raw/Tilera

SDF3/Aelite

ForsyDE/Nostrum

SigmaC/Kalray

é

