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INTRODUCTION 
Today  

 14th ACM-IEEE International Conference on Formal Methods and Models for 

(Embedded) System Design 

Until 2013 was Formal Methods and Models for (Hardware-Software) Codesign 

 

a) Hardware Design has traditional Models for Synthesis (up to a point) 

 

b) System Engineering has its methodologies and diagrams 

 

But Software Modeling and Formal Methods do not really match mainstream 

Software Engineering practices 

 

So what is relevant about Software Modeling for Embedded/CPS system design? 

Or what could be ? 
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OUTLINE 

1. System-level, Model-driven, Platform-Based design 

2.  Around Hardware CAD and Synthesis 

3. Around Software Engineering (MoCs vs MoPs) 

4. A Clock Constraint Specification Language 

5. Conclusion and discussion 
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System-level, Model-driven, 

Platform-Based design 

Multiviews, Cyber-Physical and Systems of Systems 
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Y-Chart design approach 
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Application 

model 
Architecture

model 

mapping 

Also branded as: Application / Architecture Adaptation (AAA) 

where adaptation means optimized mapping, 

 and mapping covers allocation in space and scheduling in time 

Actually used for design space exploration in distinct engineering purposes, at various 

modeling levels. 



Targeting Hardware: Platform-Based Design 
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Application 

model 

mapping 

platform 

features 

Architecture 

model 

the version of Alberto Sangiovanni-Vincentelli 

(UC Berkeley + MARCO Giga-Scale Silicon Research Center 

Application model is here only to provide typical use cases (booting Linux, one-day 

battery life) only to exercice the platform and accumulate non-functional information 

(typically by simulation in SystemC) 

 

Virtual Platforms and Virtual prototypes assembled by Hardware Architects. 



Provisions Requirements Provisions Requirements 

Application / Architecture Adaptation (AAA) 
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mapping 

Architecture-aware 

application 

Here mapping corresponds to abstract compilation onto parallel heterogeneous architectures.  

Application 

model 

Architecture 

model 

Typically used in Real-Time Scheduling and Reactive programming, to get logical timing 

guarantees  

Q:  can clever mapping make a non time-predictable platform act more predictably ?  

Assume / guarantee approach: one needs 

•Worst-Case Execution Time WCET 

•Worst-Case Communication Time WCCT 

hopefully accurate (low variability, Precision Timed) 

.  

Interplay between computations and communications 

most important (overlap and conflicts) 



Provisions Requirements 

A two-storey approach  
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mapping 

The AAA approach cannot span 

the complete design 

 

Predicable WCET and WCCT 

computed at a component level 

(which?) 

 

Working at Ground-level more 

messy (less abstract) 

 needs to be applied on regular 

subcases only. 

 

Level separation may fluctuate 

to adjust the approach 

Application 

model 

Architecture 

model 

Complex appli Full platform 

First Floor 

Ground Floor 

Task 
Processing 

Element 
mapped 

Core or thread Regular Library kernels 

 



Adjust modeling to analysis (and vice-versa) 
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Before we can get this (in a realistic fashion?) we need more feedback 

How are similar things done elsewhere ?  

Can we borrow, compare, contradict ???  

Let’s embark on a Tour. 

Provisions Requirements Provisions Requirements 

mapping 

Application 

model 

Architecture 

model 

What we want: 

Logical clock constraints + simple formulas between non-functional values 

Task Graphs  

and MoCCs 
Block diagrams with 

interconnect fabric 

description 

Automatic solver or abstract  (regular) simulation for optimization 

+ accurate synthetized 

estimation (WCET/WCCT of 

consistent task kernels as 

building blocks  



A hardware/software stack 
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System Engineering 

Formal Methods and Concurrency Theory (MoCCs) 

(Domain Specific) Language design 

Parallel compilation 

Runtime execution and Optimization 

Simulation and Worst-Case Execution Time  

Hardware Abstraction Layer 

research communities 



Example model-driven platform-based AAA environments 
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Early system-level design stages (specification) 

• SysML/MARTE (AADL) 

• ARCADIA / CAPELLA  

• Amalthea 

 

Hardware Virtual platforms (MoCs and SoCs) 

• Synopysys MCO Platform Architect 

• MetroPolis 

• StreamIt/Raw (Tilera) 

• SDF3/Aelite 

• ForSyDE/Nostrum 

• SigmaC/Kalray 

 

Real-Time Scheduling 

• AADL (SysML/MARTE) 

• SynDEx 

 

Much more often, the combination remains implicit… 

 

 

  

 

 



System Engineering Design Flow: Arcadia / Capella example 
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requirement elicitation 

functional specification 

refinement 

architectural 

specification refinement 



System Engineering Design Flow: Arcadia / Capella example 
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Example: 

• (money) cost 

• mass 

• reliability (fault tolerance) 

• security (mixed-criticality) 

 

But what if dynamics involved ? 

Mode&State changes 

Allocation made by user, on 

software and hardware architectur 

 

Quality of allocation evaluated by 

computing simple cost functions: 

 

Excel-like spreadsheets mostly 

 

formulas   constraints 



SysML/MARTE 
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Non-Functional 

Properties 

Generic Resource 

(archi) 

Generic Component 

(appli) 

Hardware 

(HAL) 
Software 

(firmware) Schedulability 
Performance 

Repetitive 

structure 

SysML parametrics: formulas expressing physical laws (or CPS ones) 



AADL 
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User provides allocations 

Analysis tools compute end-to-end latency and other performance measurements 

Application 

Architecture 

Allocation 



Example: Amalthea (Bosch et al) 
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Example:  

Synopsys Platform Architect 
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Many other attempts: 

 

Metropolis 

StreamIt/Raw/Tilera 

SDF3/Aelite 

ForsyDE/Nostrum 

SigmaC/Kalray 

… 

 



Lessons 
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Applications and Architectures should be independently described, 

then (only) fitted together :  

 

• an application may be mapped to multiple execution platforms 

• a SW/HW platform is versatile and supports many application 

 

At high-level, simple cost function formulas may be in order, at lower-level a more 

dynamic simulation relation needed, and if applications have static control the 

difference is less 

 

Full control over the (closed) system is assumed. In our case:  

High-Performance or Real-Time Embedded Programming (HPeC) 

 



Around Hardware Computer-Aided Design 

Sous-titre facultatif 
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A tradition of models  
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Electric 
(continuous) 

Logical gates 
(discrete Boolean) 

RTL 
(HW data types) 

Cycle-Accurate 
(SW bit-accurate types) 

Transaction-Level  
• accurate time 

• approximate time 

• loosely timed 
simulation modes 

Programmer View 
(SW bit-accurate types) 

Spice 

Logical synthesis 

VHDL, Verilog 

SystemC 

New issues in modeling and simulation 



An example many-core time-deterministic processor  
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A large audience example 
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An example Processor for car applications 
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big. LITTLE alternative mappings 
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What form of info does one need to organize scheduling ? 
(cf. upcoming talk by Emilien Kofman) 



Lessons 
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Big issues in practice are 

• Overlapping communications with computations 

• Dealing with different (physical) clock speeds 

Processor cores run faster than bus/NoC, than external memory  

• Dealing with performance and low-power (and temperature) 

Different clock domains and power domains dark silicon, DVFS… 

 

Ambition is to make the architectural platform model time-predictable 

(as much as possible) 

• Either by supposing the real architecture is 

• Or by using it in a way that computations and communications fit inside their alloted 

processing and interconnect resources 

Avoiding cache misses 

Avoiding media contention 

Requires again static, data-independent control in applications: static planning 

Simple relations between dimensions, here again ? 

(Hardware Architects use Excel for Timing-Closure )… 



Sketch: just enough SoC structure  

(to support annotation and build constraints) 
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Annotate with   
• power & clock domains, 

• frequency values,  

• storage size values,  

• WCET,  

• WCCT, 

• capacity to overlap computation with communication 

(DMA and NIC) 

Processor 

Core 

Thread 

Interconnect Storage 

SoC Simple metamodel  (vs MARTE  ) 
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Around Software Engineering 
Programming Models for parallel processing 
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Parallel Programming Models 

OpenMP (shared memory) 
1. Annotations to instruct the compiler on potential parallelism(s): 

2. Parallel for-loops, regions, synchro barriers (ingredients of static oontrol 

programs) 

3. With successive versions, always more annotation types (simd, target device) 

4. Also more and more ways to inquire the platform about its dimensions and set 

up affinities       

                  ways to instruct “some” mapping “by hand”  

 

OpenCL (data parallelism 
1. Programs split as sets of kernels/tasks, to be applied in a data-parallel fashion 

2. Same remark as for OpenMP (4) above 

 

MPI  (distributed memory task parallelism and streaming) 
1. Networks of (parallel) Processes with message-passing 

2. Description of interconnect topology for platform (regular graphs) 

3. Placement done by compiler (obscure, may use affinity) 

 

In all cases ,generality (no global static control assumption)  is  desired. 

Some mapping (affinity) and scheduling always done, but without any search for 

optimality.  

No orthogonality (architecture description hinted inside application) 

  
 

 



OpenMP Multiprocessing 
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• Originally, annotation pragmas to indicate which for-loops 

could be executed in parallel (if distinct iterations data-

independent) 

• Supposedl equivalent to sequential form, and shared memory 

(unlike MPI) 

• Issue: no real check that pragmas are correct (remember 

polyhedral model a few foils ago). 

• New in v4: Tasks (so that scheduling is really dynamic); goes 

again the idea of planning before-hand (compilation) 

• More and more pragmas (simd, target…) are letting the actual 

(supposed) architecture crawl into the program description (no 

orthogonality) Appli should first be archi agnostic, then only 

made archi aware by compilation 
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OpenCL 
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• Kernels (tasklets?) 

• Explicit memory hierarchy and explicit data transfer for GPU 

computing 

• Whole philosophy is to overfeed the processing elements, and 

execute one when data have arrived (finger-crossed) 

• Main issue is to overlap computation and communication 



Message-Passing Interface (MPI) 
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• Highly used for High-Performance Computing (grids, clusters) 

• Mostly message-passing and synchronization primitives, to be 

applied with any general-purpose sequential language (in fact 

Fortran or C++ generally) 

• Point-to-point or collective (broadcast, all-to-all) communications 

• Means to describe virtual network topology as graph 

• Big issue is to assign processes to processors (statically?), and to 

map the virtual communication onto the real interconnect 

infrastructures 

• Both prominent frameworks (OpenMPI and MPICH) have fancy 

dedicated library, commercial offers are made by specific hardware 

vendors 

• Mapping done at runtime, but what about static control processes 

and static mapping at compile time ? 



MPI quick card (excerpt) 
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•Communicators with Topology 
•Create with cartesian topology. (§6.5.1) 
•int MPI_Cart_create (MPI_Comm comm_old, 

•int ndims, int *dims, int *periods, int 

•reorder, MPI_Comm *comm_cart) 

•Suggest balanced dimension ranges. (§6.5.2) 
•int MPI_Dims_create (int nnodes, int 

•ndims, int *dims) 

•Determine rank from cartesian coordinates. (§6.5.4) 
•int MPI_Cart_rank (MPI_Comm comm, int 

•*coords, int *rank) 

•Determine cartesian coordinates from rank. (§6.5.4) 
•int MPI_Cart_coords (MPI_Comm comm, int 

•rank, int maxdims, int *coords) 

•Determine ranks for cartesian shift. (§6.5.5) 
•int MPI_Cart_shift (MPI_Comm comm, int 

•direction, int disp, int *rank_source, 

•int *rank_dest) 

•Split into lower dimensional sub-grids. (§6.5.6) 
•int MPI_Cart_sub (MPI_Comm comm, int 

•*remain_dims, MPI_Comm *newcomm) 

•Related Functions: MPI_Graph_create, MPI_Topo_test, 

•MPI_Graphdims_get, MPI_Graph_get, 

•MPI_Cartdim_get, MPI_Cart_get, 

•MPI_Graph_neighbors_count, MPI_Graph_neighbors, 

•MPI_Cart_map, MPI_Graph_map 



Compilation and Runtime Execution  
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• HPC Runtime: StarPU,  XKaapi, RMC 

 

• Parallel compilation & Polyhedral model : ClooG, Graphite, R-Stream 

• (often produces OpenMP-ish code) 

 

These always operate by trying to exhibit maximal  paralleism on the 

application side (and the kind of parallelism wanted first), then try to adjust it 

dynamically to a “phntom” architecture only reflected by a few features showing 

avaibility of simple resources 

 

Can we do better with a real architecture model?  

(Of course static control restrictions for compile-time decisions) 

  



Data/Task parallel levels: 

Nested For-Loop programs with affine bounds 
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Both code and model: 

• Strict separation between indexes and other variables                           

(only indexes impact control) 

• Other variables are array locations  

      (referenced by affine expressions of indexes) 

May produce explicit control/data flowgraphs to extracy potential parallelism 

      (from dependences between operations) 

• Extended: precise but untractable 

• Reduced:  quality of solution depends on information preserved 

Dependence levels (Allen-Kennedy) 

Direction vectors (Lamport, Wolf & Lam) 

Polyhedral models (Feautrier) 

In all 3 cases, solutions found are expressed by regular (affine) 

scheduling relations between operations : logical clocks !  

 

 



Silly simple example 
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for j = 1 to N 

   for i = 1 to N 

        a(i+1,j+1)= a(i, j+1) + a(i+1,j) 

   end 

end 

0 1 2 3 

1 

2 

3 

i 

j 

dependences 

for j’ = 2 to 2N 

   parfor i’ = max(1,j’-N) to min(N,j’-1) 

        a(i,j’-i’)= a(i’-1, j’-i’) + a(i’,j’-i’-1) 

   end 

end 

j’ 

i’ 

step(a(i,j))= i+j-1 

 



Tiling 
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•Change the granularity 

•…to adjust it to match the size of a single Processing Element 

•Locality and shared memory space makes performance highly predictable 

Task Task Task 

sequencial 

or 

Data parallelism 

Task streaming,  

software pipelining 

Task parallelism 



Typical (and useful) library kernels 
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• Linear algebra: LinPack ScalaPack (Blast),… 

• Convolutions Fast Fourier Transform: FFTW, Spiral 

• Neural Networks (only execution, not training part): a mix of both 

• Signal Processing (filters) : Halide 

• Stencil algorithms for numerical analysis ./ scientific computations 

 

This type of effort lead to Domain-Specific Languages 

Restricted expressivity: linear or DAG fillter streams  

Transformations to exhibit some form of parallelism (data or vectorize) 

Scheduling often not fully automatic, or obtained by progressive selection 

(Dynamic Programming, Auto-tuning, or “Auto-Scheduler”…) 

…although algorithm stream definitions are often recursive in terms of the 

data (multi-array) size,  so that with a simple core architecture target model  

it is easy to compute which size fits in (and then loop sequentially to get 

results). (Application ground floor resembles architecture groundfloor) 



Fast Fourier Transform 
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Can easily be decomposed (recursively up to intermediate permutations) along 

sizes 2N 

 
Given a target processing core (or thread): 

• its local register count 2R 

• its local memory 2M 

• its number of vectorized (simd) or parallel (GPU) ALUs 2C 

one can compute by proportions a pattern adjusting the available parallelism (and 

sequential loops around) 

 

 

Radix4 

Radix8 



Convolutional Neural Networks 
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source: http://deeplearning.net/tutorial/lenet.html 

Task streamin for layers 

+ potential data parallelism  according to locality and tile overlap 



Dream… 
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When 

• Application restricted to simple filter DAG/pipeline kernel 

• Data value organization well understoood (and statically known) 

 

• Simple processor targeted (single core, processing element, or thread) 

• Shared memory, low-cost communication (data transfer) 

 

• Mutual correspondance of sizing between appli and archi, and simple 

cost function formulas, 

Then the ground floor mapping of library kernels to core should deliver 

time-predictable results (WCET) 

Then one could consider optimizing full (static control) applications on 

full platform, designing time-predicatble communication pattterns. 

 



ConvNets on Kalray MPPA 
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source: B. Ganne (Kalray) , Machine Learning on Multicores, NeuroStic Days 2015 (in French) 

conv1 

conv2 

conv3 

conv4 

conv5 

fc6 

fc7 



FFT on Intel Haswell 
(Mohamed Bergach PhD thesis) 
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SIMD CPU cores (4 cores) 

• each core enough L1/register memory to execute 4 stages at once : 

2 256-bit SIMD ALUs, 16 256-bit registers, 128 floating-point numbers 

• FFT 1064 (radix 10, 10 stages) performed as iteration  4+4+2  

• in C++ with simd intrinsics 

GPU Processing Elements (40) 

• each PE enough L1/register memory to execute 3 stages at one  

2 128-bit  ALUs, 2K bit registers, 64 floating-point numbers 

• FFT 1024 executed as iteration 3+3+3+2 

• in OpenCL 

 

To force allocation one needs affinity (dismiss hyperthreading etc), currently not 

obvious 

In the end one gets a libray of mapped functions with reasonably accurate cost, to 

be used by upper floor analyses 
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Concurrent Models of Computation 

and Communication 
Process Networks, Scheduling and Routing 
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SDF (synchronous data-flow process networks) 
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• Weighted Marked Graphs (conflict-free 

subset of Petri Nets) 

• Distinct issues for acyclic graphs and 

strongly connected components 

• First-level self-timed semantics 

• Second stage: optimal scheduling exist, 

assuming no parallelism limitations 

• Static schedules lead to regular form (the 

binary word of activations of any node is of 

specific form  

• all nodes adopt the same rate 

4 4 

8 

4 4 

2 2 

2 2 

4 4 

1 

4 

1 

8 

4 

x2 

x8 

x1 

x2 x2 

x2 

x1 



Regular schedules in SDF 
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The noticeable thing here:  

• (static) schedules can be represented as regular 

infinite binary words  

u.(v) , u initial, v repeated 

where  

1 at location n means active at step n 

0 at location n means idle at step n 

 

11000 
01100 

00110 

00011 

10001 

While very primitive, it corresponds to the way ASAP schedule assignment goes 

Later it can be turned into Gantt Charts, when sequences get long 

 

No architectural resource constraints considered here: ideal parallelism 



Regular schedules in SDF 
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Now what if we map (here superpose) to an 

execution platform ? 
• Cost of communication is no longer uniform 

(nuMA) 

• Computations or communications sharing a 

single resource may need to be serialized 

(multitasking) 

 

But the principles of asap scheduling stays the 

same ! 

Even more constraints may be applied and task 

fission/fusion also… 

 

To what extent can we represent in this 

abstract setting the phenomena encountered 

earlier ? 

P1 P2 



Adding predictable deterministic control to SDF 
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• add a switch node), but with internal switching condition (as in Kahn 

Process Networks  functional determinism, latency-insensitive design 

 

• done in Cyclo-Static Data-Flow and StreamIt graphs (but without 

initialization patterns 

• Our own view: add regular switching/routing patterns in the same 

flavor as schedule words activating conditions 

 

 KRG process network model 

• Study (equational, algebraic)  graph transformations that preserve 

functionality (self-timed) 

• these transformations made to change the buffer/data dependencies to 

adjust to a given platform communication topology graph (eg, NoC) 



StreamIt example 
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roundrobin(1,1,1,1,1,1,1,1,1) 

roundrobin(12,12,12,12,12,12,12,12,12) 

transpose 

roundrobin(16,16,16) 

blockSplit 

roundrobin(48,48,48) 

duplicate 

roundrobin(12,12,12

) 

blockSplit 

roundrobin(108,108,108

) 

duplicate 

roundrobin(16,12) 

roundrobin(16,16,16) 

blockCombineSplit 

MatrixBlockMultiply 

28 

12 
36 

12 

roundrobin(144,108) 

roundrobin(4,4,4) 

roundrobin(4,4,

4) 

roundrobin(4,4,4) 

duplicate(1,1,1) 

duplicate(1,1,1) 

roundrobin branch dispatcher and 

duplicate parallel output  

confused as “splitters” (unfortunate?) 

 

Q. 

drawn from William Thies PhD dissertation (MIT, 2009) 

pattern1 

pattern2 

? 

? 



Silly little KRG example 
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4 

4 

1 

1 

4 

2 2 

2 2 

2 

4 

1 

1 

1 

1 

4 

3 1 

3 1 

4 

4 

1 

1 

1 

1 

2 

(0011) 

(0011) 

(0111) 

(0111) 

split/demux/map node 

merge/mux/reduce node 



 Transitivity of Selects 

(a) (b)

w’0 w’1

w

w’2

b

c

0 1

0 1

w’0 w’1

w

w’2

c on b
0 1

0 1
b when b on c

000111 

001 

000001 

00011 



on/when operators 

           (0.u) on v = 0.(u on v) 

        (1.u) on x.v = x.(u on v) 

 

 (x.u) when (0.v) = u when v 

       (x.u) when (1.v) = x. (u when v) 



on effects 

           (0.u) on v = 0.(u on v) 
        (1.u) on x.v = x.(u on v) 

 
 

u 

uinit = 001 

  
   . . . 

ustat = 01001 

u on v 

0 0 0 0 0 0 0 0 1 1 1 1 1 

v 

0 0 0 0 0 0 0 0 0 1 1 1 0 

1 1 1 0 0 



when effects 

            (x.u) when (0.v) = u when v 

       (x.u) when (1.v) = x. (u when v) 

v 

uinit = 001 

  
   . . . 

ustat = 01001 

u 

0 0 0 0 0 0 0 0 1 1 1 1 1 

u when v 

x x x x x x x x 0 1 1 1 0 

1 1 1 0 0 

most meaningful whenever 

u subclock of v 



Transitivity of Merges 

w0 w1

w’

w2

b on c

(a)

0 1

0 1

b

c

(b)

w0 w1

w’

w2

0 1

0 1

c when c on b



Selects up across Merges 

w0 w1 w0 w1

w’0 w’1 w’0 w’1

b

c

c when b

(a) (b)

0 1

0 0

0 1

1 1

0 1

0 1

c when b

b when c b when c



Sharing vs disorder 

0.1. ... 

1.0. ... 

u2

u1

0 1

0 0

0 1

1 1

1.0. ... 

...

v2

v1

...
v1

u2

...

u1

v2

...

0.1. ... 

? 0 1

0 1
?

u2

u1
...

v2

v1

...

...

u1

v2

...

v1

u2
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Normal forms (point-to-point links) 

C_n 

C1 

C2 

C1 C2 C_n 

1s1 

1s2 

1sn-1 

2s1 

2s2 

2sn-1 

ns1 

ns2 

nsn 

1m1 2m1 n-1m1 

1m2 2m2 n-1m2 

1mn 2mn n-1mn 

1b1 2b1 

nb1 

1b1 2b1 
nb1 

1b1 2b1 

nb1 

  
 

 

  
 

 

 



Lessons 

Regular scheduling arises naturally as solution space for optimal results 

 

• Classical scheduling of Process Networks 

• Scheduling of nested For-loops programs wth affine bounds 

• … 

 

Regular switching patterns can match the expressive level of description 

• represent the transformations in data transfer/communication pattern 

• play with the boundaries between data- and task- parallelism 



Task streaming level:  Scheduling Theory  
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Original problem is to schedule independant tasks with hard deadline 

requirements on a mono- or multi-processor  

• static scheduling of periodic tasks: Rate-Monotonic Analysis, Deadline-

Monotonic 

• dynamic schedling of periodic/sporadic preemptible tasks: Earliest-deadline-

first, least-laxity first,… 

 

Simplified assmptions lead to positive methods/results 

 

Then accounting for communications, context-switches in preemption, and further 

issues make life harder (and literature bigger) 

 

First step is to specify in clear mathematical formulas what are the real-time 

constraints 



A Clock Constraint Specification Language 

Declarative specifications for the top floor 
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Multiform Logical Time 

Main idea is simple:  

every (pure) event that occurs repeatedly can be used as a logical clock  

 

logical clock = sequence/flow of ticks/signals = activation condition 

 

examples:   

• (physical) clock cycles in a modern embedded processor  

• ignition in a car (4 times each turn of engine, no matter the speed) 

• sensor event detection (such as infra-red cells, gesture detection, lidars,..) 

• by the way, regular clockwatch physical time can also be considered logical… 

 

We claim Multiform Logical Time is natural and invaluable at design/specification time 

• Expanding multiform logical time to uniform physical time depends on implementation conditions  



Clock Constraint Specification Language) CCSL  

• Meant to express constraints and properties in (multiform) logical time 

• Targets the platform-based design/AAA framework 

 

• Inspired from Synchronous (actually polychronous) languages 

• Inspired from Classical and Real-Time Scheduling notions. 

 

• Not usually stand-alone (extracts the ordering relations between events 

whose meaning is part of a larger specification) 

• Formal syntax to reason about logical time relations (including 

simultaneity) 

• Concerns for expressivity and decidability 



Two natural partial orders 
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a subclock b (a  b) 

 

• inspired from synchronous 

(polychronous) languages  

• inpired from shapes of regular static 

scheduling / parallel allocation 

• inspired from hardware and system 

design 

a faster than b (a ≤ b) 

 

• inspired from real-time scheduling 

• inspired from Timed Automata 

• … 

used either in an imperative or declarative fashion 

each tractable individually, but only the combination truly expressive 

… and problematic  



Brief recap on Synchronous languages 1. Signal /Lustre 

x = fct(y,z) 

x = init -> pre(y) 

x = y default z 

x = y when z  (z:Boolean flow) 

           c = when z, x = y @ c  

 

^x=^y 

^x#^y 

c_y = c_z      c:= c_y 

c_x := c_y 

c_x = c_y union c_z 

c = c_z filtered_by ?z    (?z Boolean sequence)  

c_x = c_y inter c 

 

c_x = c_y 

c_x # c_y 

Logical clocks not syntactic elements in Lustre, no totally first-class in Signal, 

explicit activation condition in Scade  



Brief recap on Synchronous languages 2. Esterel 

pause (next instant) 

P;Q 

P || Q  

loop P end 

present S then P else Q 

if ?S then P else Q 

emit S 

signal S in P end 

         + sequential computations on data variables 

 

                 Signals are first-class citizen logical clocks 

                 They represent shared variables with precise constructive consensus 

semantics 

 

start P when S 

abort P when S 

stop P when S 

suspend P when S 

activate P when S 

 

 

 

 

 



An example program 
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loop 

  await A; 

  await immediate B 

  emit C(A?) 

end 

• Logical clocks are the event-driven 

control structures (with registers that are 

latching instants) 

• new clocks from old clock (only 

present-else case is problem, but 

usually triggered by some previous 

clock/register) 

• Simple Mealy machine interpretation 

for each construct 

• “Sensible” clocks should tick infinitely 

often  

B /  

A /  

AB / C(?A) 

B / C(?A) 

C= A sampledOn B 



A second example 
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(weak)every B 

  do (weak)abort 

            await B; emit Err 

        when n*A 

  done 

end 

• Constraints seen as Observers 

• Assume/Guarantee 

B /  

A[1] /  

B SporadicOn A 

A[n] /  

B /  

B / Err 



CCSL in a foil 

expressions 

a union b   

a inter b  

a minus b 

fastest(a,b) 

slowest(a,b) 

sync(a,b)  

 

a filteredBy w 

a sampledOn b 

relations/constraints 

only way to « speed up » rate (more ticks) 

(less ticks, may become finite) 

(less ticks, may become finite) 

min of timings 

max of timings 

when timings match 

 

         subsampling, solution-oriented (k-periodic, regular) 

         sporadic sampling 

 

 

a, b, c .. clocks,   w mask (infinite regular binary word) 

a = b 

a ≠ b  

a ≤ b 

a < b 

a # b 

a AlternatesWith  b 



Results (extracts) 
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Each individual constructs translates into a: 

 

transition-labelled extended Büchi Mealy transition systems. 

 

Not always Finite-State machine, also integer counters  

(cf fastest(C,D),or C ≤ D ) 

 

Full system is a parallel product of such t-E Büchi Mealy machines 

 

Too Expressive (can encode Petri Nets with inhibitor arcs, and similar 

arguments as classical 2 counter machines)  Turing-Complete 

 

But many sources of sensible restrictions ensuring decidability 

 



Encoding asynchronous Petri Nets 
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Clocks 

o  t_p, p_t  for each t, p connected 

o   t for each t  (firing the transition) 

o  p_in and p_out for put/get token to/from that place 

 

t = inter(p_t, p in t)  inter(t_p, p in t)  

 

t1 # t2 … # tn    
(transition are exclusive in time, not to mix tokens) 

 

p_in    = union(t_p, p in t)  

 

p_out = union(p_t, p in t)  

 

(p_out shiftedBy init_Tok_p) ≥ p_in 

   (tokens consumed only after being produced) 

 

 

t 

p 

p’ 

Note: in general Petri Nets, weights can be replaced by multiple places) 



Encoding PN inhibitor arcs 
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                                          t = inter(p_t, p in t)  inter(t_p, p in t)  

 

                                          t1 # t2 … # tn    
(transition are exclusive in time, not to mix tokens) 

 

                                          p_in    = union(t_p, p in t)  

 

                                          p_out = union(p_t, p in t)  

 

                                         (p_out shiftedBy init_Tok_p) ≥ p_in 

 

p_in # p_out  

 

void_q = fastest((q_out shiftedBy init_Tok_q),q_in) inter q_out 
ticks when place becomes empty 

unvoid_q = void_q SampledBy q_in 
ticks when place becomes occupied 

t SampledOn (void_q union unvoid_q) = t SampledOn unvoid q 
void alternates with unvoid, these main equation states that t occurs after the void 

and before the unvoid 

 

 

 

t 

p 

p’ 

q 



Schedulability issue: simplest example 

• B  A     A filtered by (01)  =  B filtered by (01) 

 

 

Here in fact B=A, since all even occurrences must coincide (while odd 

occurrences seem free), B can never catch up with any delay. 

 

 But it may be noticed too late in plain simulation (without backtracking) 

75 



Many tractable subsets 
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If the clock dependency is a forest (no reconvergence) 

If it is a DAG but without synchronizing operators (inter,..) 

in the middle 

More to be defined 

… 



Conclusions 
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Thank you 

www.inria.fr 



Platform-Based Design and Y-Chart 

methodology 
Sous-titre facultatif 
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