
Multiform Logical Time for
MeMo-Codesign

Robert de Simone
Inria Sophia-Méditerranée & Université Code d’Azur

INTRODUCTION
Today

 14th ACM-IEEE International Conference on Formal Methods and Models for

(Embedded) System Design

Until 2013 was Formal Methods and Models for (Hardware-Software) Codesign

a) Hardware Design has traditional Models for Synthesis (up to a point)

b) System Engineering has its methodologies and diagrams

But Software Modeling and Formal Methods do not really match mainstream

Software Engineering practices

So what is relevant about Software Modeling for Embedded/CPS system design?

Or what could be ?

MemoCode 2016 - 2

OUTLINE

1. System-level, Model-driven, Platform-Based design

2. Around Hardware CAD and Synthesis

3. Around Software Engineering (MoCs vs MoPs)

4. A Clock Constraint Specification Language

5. Conclusion and discussion

MemoCode 2016 - 3

System-level, Model-driven,

Platform-Based design

Multiviews, Cyber-Physical and Systems of Systems

1

Y-Chart design approach

MemoCode 2016 - 5

Application

model
Architecture

model

mapping

Also branded as: Application / Architecture Adaptation (AAA)

where adaptation means optimized mapping,

 and mapping covers allocation in space and scheduling in time

Actually used for design space exploration in distinct engineering purposes, at various

modeling levels.

Targeting Hardware: Platform-Based Design

MemoCode 2016 - 6

Application

model

mapping

platform

features

Architecture

model

the version of Alberto Sangiovanni-Vincentelli

(UC Berkeley + MARCO Giga-Scale Silicon Research Center

Application model is here only to provide typical use cases (booting Linux, one-day

battery life) only to exercice the platform and accumulate non-functional information

(typically by simulation in SystemC)

Virtual Platforms and Virtual prototypes assembled by Hardware Architects.

Provisions Requirements Provisions Requirements

Application / Architecture Adaptation (AAA)

MemoCode 2016 - 7

mapping

Architecture-aware

application

Here mapping corresponds to abstract compilation onto parallel heterogeneous architectures.

Application

model

Architecture

model

Typically used in Real-Time Scheduling and Reactive programming, to get logical timing

guarantees

Q: can clever mapping make a non time-predictable platform act more predictably ?

Assume / guarantee approach: one needs

•Worst-Case Execution Time WCET

•Worst-Case Communication Time WCCT

hopefully accurate (low variability, Precision Timed)

.

Interplay between computations and communications

most important (overlap and conflicts)

Provisions Requirements

A two-storey approach

MemoCode 2016 - 8

mapping

The AAA approach cannot span

the complete design

Predicable WCET and WCCT

computed at a component level

(which?)

Working at Ground-level more

messy (less abstract)

 needs to be applied on regular

subcases only.

Level separation may fluctuate

to adjust the approach

Application

model

Architecture

model

Complex appli Full platform

First Floor

Ground Floor

Task
Processing

Element
mapped

Core or thread Regular Library kernels

Adjust modeling to analysis (and vice-versa)

MemoCode 2016 - 9

Before we can get this (in a realistic fashion?) we need more feedback

How are similar things done elsewhere ?

Can we borrow, compare, contradict ???

Let’s embark on a Tour.

Provisions Requirements Provisions Requirements

mapping

Application

model

Architecture

model

What we want:

Logical clock constraints + simple formulas between non-functional values

Task Graphs

and MoCCs
Block diagrams with

interconnect fabric

description

Automatic solver or abstract (regular) simulation for optimization

+ accurate synthetized

estimation (WCET/WCCT of

consistent task kernels as

building blocks

A hardware/software stack

MemoCode 2016 - 10

System Engineering

Formal Methods and Concurrency Theory (MoCCs)

(Domain Specific) Language design

Parallel compilation

Runtime execution and Optimization

Simulation and Worst-Case Execution Time

Hardware Abstraction Layer

research communities

Example model-driven platform-based AAA environments

MemoCode 2016 - 11

Early system-level design stages (specification)

• SysML/MARTE (AADL)

• ARCADIA / CAPELLA

• Amalthea

Hardware Virtual platforms (MoCs and SoCs)

• Synopysys MCO Platform Architect

• MetroPolis

• StreamIt/Raw (Tilera)

• SDF3/Aelite

• ForSyDE/Nostrum

• SigmaC/Kalray

Real-Time Scheduling

• AADL (SysML/MARTE)

• SynDEx

Much more often, the combination remains implicit…

System Engineering Design Flow: Arcadia / Capella example

MemoCode 2016 - 12

requirement elicitation

functional specification

refinement

architectural

specification refinement

System Engineering Design Flow: Arcadia / Capella example

MemoCode 2016 - 13

Example:

• (money) cost

• mass

• reliability (fault tolerance)

• security (mixed-criticality)

But what if dynamics involved ?

Mode&State changes

Allocation made by user, on

software and hardware architectur

Quality of allocation evaluated by

computing simple cost functions:

Excel-like spreadsheets mostly

formulas  constraints

SysML/MARTE

MemoCode 2016 - 14

Non-Functional

Properties

Generic Resource

(archi)

Generic Component

(appli)

Hardware

(HAL)
Software

(firmware) Schedulability
Performance

Repetitive

structure

SysML parametrics: formulas expressing physical laws (or CPS ones)

AADL

MemoCode 2016 - 15

User provides allocations

Analysis tools compute end-to-end latency and other performance measurements

Application

Architecture

Allocation

Example: Amalthea (Bosch et al)

MemoCode 2016 - 16

Example:

Synopsys Platform Architect

MemoCode 2016 - 17

Many other attempts:

Metropolis

StreamIt/Raw/Tilera

SDF3/Aelite

ForsyDE/Nostrum

SigmaC/Kalray

…

Lessons

MemoCode 2016 - 18

Applications and Architectures should be independently described,

then (only) fitted together :

• an application may be mapped to multiple execution platforms

• a SW/HW platform is versatile and supports many application

At high-level, simple cost function formulas may be in order, at lower-level a more

dynamic simulation relation needed, and if applications have static control the

difference is less

Full control over the (closed) system is assumed. In our case:

High-Performance or Real-Time Embedded Programming (HPeC)

Around Hardware Computer-Aided Design

Sous-titre facultatif

2

A tradition of models

MemoCode 2016 - 20

Electric
(continuous)

Logical gates
(discrete Boolean)

RTL
(HW data types)

Cycle-Accurate
(SW bit-accurate types)

Transaction-Level
• accurate time

• approximate time

• loosely timed
simulation modes

Programmer View
(SW bit-accurate types)

Spice

Logical synthesis

VHDL, Verilog

SystemC

New issues in modeling and simulation

An example many-core time-deterministic processor

MemoCode 2016 - 21

A large audience example

MemoCode 2016 - 22

An example Processor for car applications

MemoCode 2016 - 23

big. LITTLE alternative mappings

MemoCode 2016 - 24

What form of info does one need to organize scheduling ?
(cf. upcoming talk by Emilien Kofman)

Lessons

MemoCode 2016 - 25

Big issues in practice are

• Overlapping communications with computations

• Dealing with different (physical) clock speeds

Processor cores run faster than bus/NoC, than external memory

• Dealing with performance and low-power (and temperature)

Different clock domains and power domains dark silicon, DVFS…

Ambition is to make the architectural platform model time-predictable

(as much as possible)

• Either by supposing the real architecture is

• Or by using it in a way that computations and communications fit inside their alloted

processing and interconnect resources

Avoiding cache misses

Avoiding media contention

Requires again static, data-independent control in applications: static planning

Simple relations between dimensions, here again ?

(Hardware Architects use Excel for Timing-Closure)…

Sketch: just enough SoC structure

(to support annotation and build constraints)

MemoCode 2016 - 26

Annotate with
• power & clock domains,

• frequency values,

• storage size values,

• WCET,

• WCCT,

• capacity to overlap computation with communication

(DMA and NIC)

Processor

Core

Thread

Interconnect Storage

SoC Simple metamodel  (vs MARTE )

MemoCode 2016 - 27

Around Software Engineering
Programming Models for parallel processing

3

Parallel Programming Models

OpenMP (shared memory)
1. Annotations to instruct the compiler on potential parallelism(s):

2. Parallel for-loops, regions, synchro barriers (ingredients of static oontrol

programs)

3. With successive versions, always more annotation types (simd, target device)

4. Also more and more ways to inquire the platform about its dimensions and set

up affinities

  ways to instruct “some” mapping “by hand”

OpenCL (data parallelism
1. Programs split as sets of kernels/tasks, to be applied in a data-parallel fashion

2. Same remark as for OpenMP (4) above

MPI (distributed memory task parallelism and streaming)
1. Networks of (parallel) Processes with message-passing

2. Description of interconnect topology for platform (regular graphs)

3. Placement done by compiler (obscure, may use affinity)

In all cases ,generality (no global static control assumption) is desired.

Some mapping (affinity) and scheduling always done, but without any search for

optimality.

No orthogonality (architecture description hinted inside application)

OpenMP Multiprocessing

MemoCode 2016 - 29

• Originally, annotation pragmas to indicate which for-loops

could be executed in parallel (if distinct iterations data-

independent)

• Supposedl equivalent to sequential form, and shared memory

(unlike MPI)

• Issue: no real check that pragmas are correct (remember

polyhedral model a few foils ago).

• New in v4: Tasks (so that scheduling is really dynamic); goes

again the idea of planning before-hand (compilation)

• More and more pragmas (simd, target…) are letting the actual

(supposed) architecture crawl into the program description (no

orthogonality) Appli should first be archi agnostic, then only

made archi aware by compilation

MemoCode 2016 - 30 ICV: Internal Control Variables

OpenCL

MemoCode 2016 - 31

• Kernels (tasklets?)

• Explicit memory hierarchy and explicit data transfer for GPU

computing

• Whole philosophy is to overfeed the processing elements, and

execute one when data have arrived (finger-crossed)

• Main issue is to overlap computation and communication

Message-Passing Interface (MPI)

MemoCode 2016 - 32

• Highly used for High-Performance Computing (grids, clusters)

• Mostly message-passing and synchronization primitives, to be

applied with any general-purpose sequential language (in fact

Fortran or C++ generally)

• Point-to-point or collective (broadcast, all-to-all) communications

• Means to describe virtual network topology as graph

• Big issue is to assign processes to processors (statically?), and to

map the virtual communication onto the real interconnect

infrastructures

• Both prominent frameworks (OpenMPI and MPICH) have fancy

dedicated library, commercial offers are made by specific hardware

vendors

• Mapping done at runtime, but what about static control processes

and static mapping at compile time ?

MPI quick card (excerpt)

MemoCode 2016 - 33

•Communicators with Topology
•Create with cartesian topology. (§6.5.1)
•int MPI_Cart_create (MPI_Comm comm_old,

•int ndims, int *dims, int *periods, int

•reorder, MPI_Comm *comm_cart)

•Suggest balanced dimension ranges. (§6.5.2)
•int MPI_Dims_create (int nnodes, int

•ndims, int *dims)

•Determine rank from cartesian coordinates. (§6.5.4)
•int MPI_Cart_rank (MPI_Comm comm, int

•*coords, int *rank)

•Determine cartesian coordinates from rank. (§6.5.4)
•int MPI_Cart_coords (MPI_Comm comm, int

•rank, int maxdims, int *coords)

•Determine ranks for cartesian shift. (§6.5.5)
•int MPI_Cart_shift (MPI_Comm comm, int

•direction, int disp, int *rank_source,

•int *rank_dest)

•Split into lower dimensional sub-grids. (§6.5.6)
•int MPI_Cart_sub (MPI_Comm comm, int

•*remain_dims, MPI_Comm *newcomm)

•Related Functions: MPI_Graph_create, MPI_Topo_test,

•MPI_Graphdims_get, MPI_Graph_get,

•MPI_Cartdim_get, MPI_Cart_get,

•MPI_Graph_neighbors_count, MPI_Graph_neighbors,

•MPI_Cart_map, MPI_Graph_map

Compilation and Runtime Execution

MemoCode 2016 - 34

• HPC Runtime: StarPU, XKaapi, RMC

• Parallel compilation & Polyhedral model : ClooG, Graphite, R-Stream

• (often produces OpenMP-ish code)

These always operate by trying to exhibit maximal paralleism on the

application side (and the kind of parallelism wanted first), then try to adjust it

dynamically to a “phntom” architecture only reflected by a few features showing

avaibility of simple resources

Can we do better with a real architecture model?

(Of course static control restrictions for compile-time decisions)

Data/Task parallel levels:

Nested For-Loop programs with affine bounds

MemoCode 2016 - 35

Both code and model:

• Strict separation between indexes and other variables

(only indexes impact control)

• Other variables are array locations

 (referenced by affine expressions of indexes)

May produce explicit control/data flowgraphs to extracy potential parallelism

 (from dependences between operations)

• Extended: precise but untractable

• Reduced: quality of solution depends on information preserved

Dependence levels (Allen-Kennedy)

Direction vectors (Lamport, Wolf & Lam)

Polyhedral models (Feautrier)

In all 3 cases, solutions found are expressed by regular (affine)

scheduling relations between operations : logical clocks !

Silly simple example

MemoCode 2016 - 36

for j = 1 to N

 for i = 1 to N

 a(i+1,j+1)= a(i, j+1) + a(i+1,j)

 end

end

0 1 2 3

1

2

3

i

j

dependences

for j’ = 2 to 2N

 parfor i’ = max(1,j’-N) to min(N,j’-1)

 a(i,j’-i’)= a(i’-1, j’-i’) + a(i’,j’-i’-1)

 end

end

j’

i’

step(a(i,j))= i+j-1

Tiling

MemoCode 2016 - 37

•Change the granularity

•…to adjust it to match the size of a single Processing Element

•Locality and shared memory space makes performance highly predictable

Task Task Task

sequencial

or

Data parallelism

Task streaming,

software pipelining

Task parallelism

Typical (and useful) library kernels

MemoCode 2016 - 38

• Linear algebra: LinPack ScalaPack (Blast),…

• Convolutions Fast Fourier Transform: FFTW, Spiral

• Neural Networks (only execution, not training part): a mix of both

• Signal Processing (filters) : Halide

• Stencil algorithms for numerical analysis ./ scientific computations

This type of effort lead to Domain-Specific Languages

Restricted expressivity: linear or DAG fillter streams

Transformations to exhibit some form of parallelism (data or vectorize)

Scheduling often not fully automatic, or obtained by progressive selection

(Dynamic Programming, Auto-tuning, or “Auto-Scheduler”…)

…although algorithm stream definitions are often recursive in terms of the

data (multi-array) size, so that with a simple core architecture target model

it is easy to compute which size fits in (and then loop sequentially to get

results). (Application ground floor resembles architecture groundfloor)

Fast Fourier Transform

MemoCode 2016 - 39

Can easily be decomposed (recursively up to intermediate permutations) along

sizes 2N

Given a target processing core (or thread):

• its local register count 2R

• its local memory 2M

• its number of vectorized (simd) or parallel (GPU) ALUs 2C

one can compute by proportions a pattern adjusting the available parallelism (and

sequential loops around)

Radix4

Radix8

Convolutional Neural Networks

MemoCode 2016 - 40

source: http://deeplearning.net/tutorial/lenet.html

Task streamin for layers

+ potential data parallelism according to locality and tile overlap

Dream…

MemoCode 2016 - 42

When

• Application restricted to simple filter DAG/pipeline kernel

• Data value organization well understoood (and statically known)

• Simple processor targeted (single core, processing element, or thread)

• Shared memory, low-cost communication (data transfer)

• Mutual correspondance of sizing between appli and archi, and simple

cost function formulas,

Then the ground floor mapping of library kernels to core should deliver

time-predictable results (WCET)

Then one could consider optimizing full (static control) applications on

full platform, designing time-predicatble communication pattterns.

ConvNets on Kalray MPPA

MemoCode 2016 - 43

source: B. Ganne (Kalray) , Machine Learning on Multicores, NeuroStic Days 2015 (in French)

conv1

conv2

conv3

conv4

conv5

fc6

fc7

FFT on Intel Haswell
(Mohamed Bergach PhD thesis)

MemoCode 2016 - 44

SIMD CPU cores (4 cores)

• each core enough L1/register memory to execute 4 stages at once :

2 256-bit SIMD ALUs, 16 256-bit registers, 128 floating-point numbers

• FFT 1064 (radix 10, 10 stages) performed as iteration 4+4+2

• in C++ with simd intrinsics

GPU Processing Elements (40)

• each PE enough L1/register memory to execute 3 stages at one

2 128-bit ALUs, 2K bit registers, 64 floating-point numbers

• FFT 1024 executed as iteration 3+3+3+2

• in OpenCL

To force allocation one needs affinity (dismiss hyperthreading etc), currently not

obvious

In the end one gets a libray of mapped functions with reasonably accurate cost, to

be used by upper floor analyses

MemoCode 2016 - 45

Concurrent Models of Computation

and Communication
Process Networks, Scheduling and Routing

4

SDF (synchronous data-flow process networks)

MemoCode 2016 - 47

• Weighted Marked Graphs (conflict-free

subset of Petri Nets)

• Distinct issues for acyclic graphs and

strongly connected components

• First-level self-timed semantics

• Second stage: optimal scheduling exist,

assuming no parallelism limitations

• Static schedules lead to regular form (the

binary word of activations of any node is of

specific form

• all nodes adopt the same rate

4 4

8

4 4

2 2

2 2

4 4

1

4

1

8

4

x2

x8

x1

x2 x2

x2

x1

Regular schedules in SDF

MemoCode 2016 - 48

The noticeable thing here:

• (static) schedules can be represented as regular

infinite binary words

u.(v) , u initial, v repeated

where

1 at location n means active at step n

0 at location n means idle at step n

11000
01100

00110

00011

10001

While very primitive, it corresponds to the way ASAP schedule assignment goes

Later it can be turned into Gantt Charts, when sequences get long

No architectural resource constraints considered here: ideal parallelism

Regular schedules in SDF

MemoCode 2016 - 49

Now what if we map (here superpose) to an

execution platform ?
• Cost of communication is no longer uniform

(nuMA)

• Computations or communications sharing a

single resource may need to be serialized

(multitasking)

But the principles of asap scheduling stays the

same !

Even more constraints may be applied and task

fission/fusion also…

To what extent can we represent in this

abstract setting the phenomena encountered

earlier ?

P1 P2

Adding predictable deterministic control to SDF

MemoCode 2016 - 50

• add a switch node), but with internal switching condition (as in Kahn

Process Networks  functional determinism, latency-insensitive design

• done in Cyclo-Static Data-Flow and StreamIt graphs (but without

initialization patterns

• Our own view: add regular switching/routing patterns in the same

flavor as schedule words activating conditions

 KRG process network model

• Study (equational, algebraic) graph transformations that preserve

functionality (self-timed)

• these transformations made to change the buffer/data dependencies to

adjust to a given platform communication topology graph (eg, NoC)

StreamIt example

MemoCode 2016 - 51

roundrobin(1,1,1,1,1,1,1,1,1)

roundrobin(12,12,12,12,12,12,12,12,12)

transpose

roundrobin(16,16,16)

blockSplit

roundrobin(48,48,48)

duplicate

roundrobin(12,12,12

)

blockSplit

roundrobin(108,108,108

)

duplicate

roundrobin(16,12)

roundrobin(16,16,16)

blockCombineSplit

MatrixBlockMultiply

28

12
36

12

roundrobin(144,108)

roundrobin(4,4,4)

roundrobin(4,4,

4)

roundrobin(4,4,4)

duplicate(1,1,1)

duplicate(1,1,1)

roundrobin branch dispatcher and

duplicate parallel output

confused as “splitters” (unfortunate?)

Q.

drawn from William Thies PhD dissertation (MIT, 2009)

pattern1

pattern2

?

?

Silly little KRG example

MemoCode 2016 - 52

4

4

1

1

4

2 2

2 2

2

4

1

1

1

1

4

3 1

3 1

4

4

1

1

1

1

2

(0011)

(0011)

(0111)

(0111)

split/demux/map node

merge/mux/reduce node

 Transitivity of Selects

(a) (b)

w’0 w’1

w

w’2

b

c

0 1

0 1

w’0 w’1

w

w’2

c on b
0 1

0 1
b when b on c

000111

001

000001

00011

on/when operators

 (0.u) on v = 0.(u on v)

 (1.u) on x.v = x.(u on v)

 (x.u) when (0.v) = u when v

 (x.u) when (1.v) = x. (u when v)

on effects

 (0.u) on v = 0.(u on v)
 (1.u) on x.v = x.(u on v)

u

uinit = 001

  
   . . .

ustat = 01001

u on v

0 0 0 0 0 0 0 0 1 1 1 1 1

v

0 0 0 0 0 0 0 0 0 1 1 1 0

1 1 1 0 0

when effects

 (x.u) when (0.v) = u when v

 (x.u) when (1.v) = x. (u when v)

v

uinit = 001

  
   . . .

ustat = 01001

u

0 0 0 0 0 0 0 0 1 1 1 1 1

u when v

x x x x x x x x 0 1 1 1 0

1 1 1 0 0

most meaningful whenever

u subclock of v

Transitivity of Merges

w0 w1

w’

w2

b on c

(a)

0 1

0 1

b

c

(b)

w0 w1

w’

w2

0 1

0 1

c when c on b

Selects up across Merges

w0 w1 w0 w1

w’0 w’1 w’0 w’1

b

c

c when b

(a) (b)

0 1

0 0

0 1

1 1

0 1

0 1

c when b

b when c b when c

Sharing vs disorder

0.1. ...

1.0. ...

u2

u1

0 1

0 0

0 1

1 1

1.0. ...

...

v2

v1

...
v1

u2

...

u1

v2

...

0.1. ...

? 0 1

0 1
?

u2

u1
...

v2

v1

...

...

u1

v2

...

v1

u2

19/11/2016 ComRed meeting 60

Normal forms (point-to-point links)

C_n

C1

C2

C1 C2 C_n

1s1

1s2

1sn-1

2s1

2s2

2sn-1

ns1

ns2

nsn

1m1 2m1 n-1m1

1m2 2m2 n-1m2

1mn 2mn n-1mn

1b1 2b1

nb1

1b1 2b1
nb1

1b1 2b1

nb1

 




 






Lessons

Regular scheduling arises naturally as solution space for optimal results

• Classical scheduling of Process Networks

• Scheduling of nested For-loops programs wth affine bounds

• …

Regular switching patterns can match the expressive level of description

• represent the transformations in data transfer/communication pattern

• play with the boundaries between data- and task- parallelism

Task streaming level: Scheduling Theory

MemoCode 2016 - 62

Original problem is to schedule independant tasks with hard deadline

requirements on a mono- or multi-processor

• static scheduling of periodic tasks: Rate-Monotonic Analysis, Deadline-

Monotonic

• dynamic schedling of periodic/sporadic preemptible tasks: Earliest-deadline-

first, least-laxity first,…

Simplified assmptions lead to positive methods/results

Then accounting for communications, context-switches in preemption, and further

issues make life harder (and literature bigger)

First step is to specify in clear mathematical formulas what are the real-time

constraints

A Clock Constraint Specification Language

Declarative specifications for the top floor

5

Multiform Logical Time

Main idea is simple:

every (pure) event that occurs repeatedly can be used as a logical clock

logical clock = sequence/flow of ticks/signals = activation condition

examples:

• (physical) clock cycles in a modern embedded processor

• ignition in a car (4 times each turn of engine, no matter the speed)

• sensor event detection (such as infra-red cells, gesture detection, lidars,..)

• by the way, regular clockwatch physical time can also be considered logical…

We claim Multiform Logical Time is natural and invaluable at design/specification time

• Expanding multiform logical time to uniform physical time depends on implementation conditions

Clock Constraint Specification Language) CCSL

• Meant to express constraints and properties in (multiform) logical time

• Targets the platform-based design/AAA framework

• Inspired from Synchronous (actually polychronous) languages

• Inspired from Classical and Real-Time Scheduling notions.

• Not usually stand-alone (extracts the ordering relations between events

whose meaning is part of a larger specification)

• Formal syntax to reason about logical time relations (including

simultaneity)

• Concerns for expressivity and decidability

Two natural partial orders

MemoCode 2016 - 66

a subclock b (a  b)

• inspired from synchronous

(polychronous) languages

• inpired from shapes of regular static

scheduling / parallel allocation

• inspired from hardware and system

design

a faster than b (a ≤ b)

• inspired from real-time scheduling

• inspired from Timed Automata

• …

used either in an imperative or declarative fashion

each tractable individually, but only the combination truly expressive

… and problematic

Brief recap on Synchronous languages 1. Signal /Lustre

x = fct(y,z)

x = init -> pre(y)

x = y default z

x = y when z (z:Boolean flow)

 c = when z, x = y @ c

^x=^y

^x#^y

c_y = c_z c:= c_y

c_x := c_y

c_x = c_y union c_z

c = c_z filtered_by ?z (?z Boolean sequence)

c_x = c_y inter c

c_x = c_y

c_x # c_y

Logical clocks not syntactic elements in Lustre, no totally first-class in Signal,

explicit activation condition in Scade

Brief recap on Synchronous languages 2. Esterel

pause (next instant)

P;Q

P || Q

loop P end

present S then P else Q

if ?S then P else Q

emit S

signal S in P end

 + sequential computations on data variables

 Signals are first-class citizen logical clocks

 They represent shared variables with precise constructive consensus

semantics

start P when S

abort P when S

stop P when S

suspend P when S

activate P when S

An example program

MemoCode 2016 - 69

loop

 await A;

 await immediate B

 emit C(A?)

end

• Logical clocks are the event-driven

control structures (with registers that are

latching instants)

• new clocks from old clock (only

present-else case is problem, but

usually triggered by some previous

clock/register)

• Simple Mealy machine interpretation

for each construct

• “Sensible” clocks should tick infinitely

often

B / 

A / 

AB / C(?A)

B / C(?A)

C= A sampledOn B

A second example

MemoCode 2016 - 70

(weak)every B

 do (weak)abort

 await B; emit Err

 when n*A

 done

end

• Constraints seen as Observers

• Assume/Guarantee

B / 

A[1] / 

B SporadicOn A

A[n] / 

B / 

B / Err

CCSL in a foil

expressions

a union b

a inter b

a minus b

fastest(a,b)

slowest(a,b)

sync(a,b)

a filteredBy w

a sampledOn b

relations/constraints

only way to « speed up » rate (more ticks)

(less ticks, may become finite)

(less ticks, may become finite)

min of timings

max of timings

when timings match

 subsampling, solution-oriented (k-periodic, regular)

 sporadic sampling

a, b, c .. clocks, w mask (infinite regular binary word)

a = b

a ≠ b

a ≤ b

a < b

a # b

a AlternatesWith b

Results (extracts)

MemoCode 2016 - 72

Each individual constructs translates into a:

transition-labelled extended Büchi Mealy transition systems.

Not always Finite-State machine, also integer counters

(cf fastest(C,D),or C ≤ D)

Full system is a parallel product of such t-E Büchi Mealy machines

Too Expressive (can encode Petri Nets with inhibitor arcs, and similar

arguments as classical 2 counter machines)  Turing-Complete

But many sources of sensible restrictions ensuring decidability

Encoding asynchronous Petri Nets

MemoCode 2016 - 73

Clocks

o t_p, p_t for each t, p connected

o t for each t (firing the transition)

o p_in and p_out for put/get token to/from that place

t = inter(p_t, p in t)  inter(t_p, p in t)

t1 # t2 … # tn
(transition are exclusive in time, not to mix tokens)

p_in = union(t_p, p in t)

p_out = union(p_t, p in t)

(p_out shiftedBy init_Tok_p) ≥ p_in

 (tokens consumed only after being produced)

t

p

p’

Note: in general Petri Nets, weights can be replaced by multiple places)

Encoding PN inhibitor arcs

MemoCode 2016 - 74

 t = inter(p_t, p in t)  inter(t_p, p in t)

 t1 # t2 … # tn
(transition are exclusive in time, not to mix tokens)

 p_in = union(t_p, p in t)

 p_out = union(p_t, p in t)

 (p_out shiftedBy init_Tok_p) ≥ p_in

p_in # p_out

void_q = fastest((q_out shiftedBy init_Tok_q),q_in) inter q_out
ticks when place becomes empty

unvoid_q = void_q SampledBy q_in
ticks when place becomes occupied

t SampledOn (void_q union unvoid_q) = t SampledOn unvoid q
void alternates with unvoid, these main equation states that t occurs after the void

and before the unvoid

t

p

p’

q

Schedulability issue: simplest example

• B  A A filtered by (01) = B filtered by (01)

Here in fact B=A, since all even occurrences must coincide (while odd

occurrences seem free), B can never catch up with any delay.

 But it may be noticed too late in plain simulation (without backtracking)

75

Many tractable subsets

MemoCode 2016 - 76

If the clock dependency is a forest (no reconvergence)

If it is a DAG but without synchronizing operators (inter,..)

in the middle

More to be defined

…

Conclusions

6

MemoCode 2016 - 78

Thank you

www.inria.fr

Platform-Based Design and Y-Chart

methodology
Sous-titre facultatif

6

MemoCode 2016 - 81

