UNIVERSITE :#5%
COTED’AZUR "-%<:-

Multiform Logical Time for
MeMo-Codesign

Robert de Simone
Inria Sophia-Méditerranée & Université Code d’Azur

INTRODUCTION

Today

14th ACM-IEEE International Conference on Formal Methods and Models for
(Embedded) System Design
Until 2013 was Formal Methods and Models for (Hardware-Software) Codesign

a) Hardware Design has traditional Models for Synthesis (up to a point)
b) System Engineering has its methodologies and diagrams

But Software Modeling and Formal Methods do not really match mainstream
Software Engineering practices

So what is relevant about Software Modeling for Embedded/CPS system design?
Or what could be ?

rd

lrnzia —~ MemoCode 2016 -2

OUTLINE

1. System-level, Model-driven, Platform-Based design
2. Around Hardware CAD and Synthesis

3. Around Software Engineering (MoCs vs MoPs)

4. A Clock Constraint Specification Language

5. Conclusion and discussion

. V277 M |/0Code 2016 .3

System-level, Model-driven,
Platform-Based design

Multiviews, Cyber-Physical and Systems of Systems

P e

Y-Chart design approach

Also branded as: Application / Architecture Adaptation (AAA)
where adaptation means optimized mapping,
and mapping covers allocation in space and scheduling in time

Architecture
model

Actually used for design space exploration in distinct engineering purposes, at various
modeling levels.

. &L’Zt,a/- MemoCode 2016

Targeting Hardware: Platform-Based Design

Virtual Platforms and Virtual prototypes assembled by Hardware Architects.

Application model is here only to provide typical use cases (booting Linux, one-day
battery life) only to exercice the platform and accumulate non-functional information
(typically by simulation in SystemC)

Architecture
model

Application Space
Application Instance

AP Platform
Specification

API Platform
p at Orm derasansssasassanans PSiy%tem Stack
i Architecture Platform atrorm Stac
features ~ s Exrtin

the version of Alberto Sangiovanni-Vincentelli
(UC Berkeley + MARCO Giga-Scale Silicon Research Center

. &thta/- MemoCode 2016

Application / Architecture Adaptation (AAA)

Here mapping corresponds to abstract compilation onto parallel heterogeneous architectures.

PIOVISIONS;

Architecture
model

Interplay between computations and communications
most important (overlap and conflicts)

Assume / guarantee approach: one needs
*Worst-Case Execution Time WCET

i *Worst-Case Communication Time WCCT
application hopefully accurate (low variability, Precision Timed)

Architecture-aware

Typically used in Real-Time Scheduling and Reactive programming, to get logical timing
guarantees
Q: can clever mapping make a non time-predictable platform act more predictably ?

. &I/Ztta/- MemoCode 2016

ProVvisions

Architecture

model

Complex appli ull platform

| |

A two-storey approach

The AAA approach cannot span
the complete design

Predicable WCET and WCCT
computed at a component level
(which?)

Working at Ground-level more

messy (less abstract)

—> needs to be applied on regular
subcases only.

Level separation may fluctuate

Regular Library kernels ‘ Core or thread 4, adjust the approach

Processing

Task mapped Element

Ground Floor

&thta/- MemoCode 2016

Adjust modeling to analysis (and vice-versa)
What we want:

Logical clock constraints + simple formulas between non-functional values

+ accurate synthetized

. estimation (WCET/WCCT of

Architecture consistent task kernels as
model building blocks

PIOVISIONS;

Task Graphs
and MoCCs

Block diagrams with
interconnect fabric
description

Automatic solver or abstract (regular) simulation for optimization

Before we can get this (in a realistic fashion?) we need more feedback
How are similar things done elsewhere ?
Can we borrow, compare, contradict ???

Let’s embark on a Tour.

. 0&2&&/- MemoCode 2016

research communtties
A harehwarelseftware stack

System Engineering

Formal Methods and Concurrency Theory (MoCCs)
(Domain Specific) Language design

Parallel compilation

Runtime execution and Optimization

Simulation and Worst-Case Execution Time

Hardware Abstraction Layer

. VO |/ 0Code 2016 - 10

Example model-driven platform-based AAA environments

Early system-level design stages (specification)
» SysML/MARTE (AADL)

« ARCADIA / CAPELLA

* Amalthea

Hardware Virtual platforms (MoCs and SoCs)
» Synopysys MCO Platform Architect

* MetroPolis

» Streamlt/Raw (Tilera)

« SDF3/Aelite

* ForSyDE/Nostrum

» SigmaC/Kalray

Real-Time Scheduling
* AADL (SysML/MARTE)
* SYynDEX

Much more often, the combination remains implicit...

. VO |/ 0Code 2016 11

System Engineering Design Flow: Arcadia / Capella example

Need understanding

__A

F: Fum:tl /

C: Component —~
/,f

Solution architectural design

I V27 DM |/0Code 2016

s o

,__,__JI

= C2

7

requirement elicitation

functional specification
refinement

architectural
specification refinement

System Engineering Design Flow: Arcadia / Capella example

Allocation made by user, on
software and hardware architectur

Quality of allocation evaluated by
computing simple cost functions:

Need understanding

Excel-like spreadsheets mostly

A:Operational activity formUIaS 69 COhStraIntS

F : Function

C: Component

Example:

* (money) cost

* mass

» reliability (fault tolerance)
« security (mixed-criticality)

Solution architectural design

But what if dynamics involved ?
Mode&State changes

. &LZ&IG/- MemoCode 2016

SysML/MARTE

MARTE foundations |
«profile» «profile» «profile» «profile» «profile»
NFPs Time GRM GCM Alloc
Non-Functiongl Generic Resouyce [Generic Compponent
Properties (anchi) (appli)
A A
1 I
MARTE design model | MARTE analysis model |
«profile» «profile» «profile» «profile» «profile» «profile»
RTEMoCC SRM HRM GQAM SAM PAM
Software Hardware Performance
(firmware) || (HAL) Schedulability
MARTE annexes |
aprofilex «profilex «modelLibrary»
VSL RSM MARTE_ModelLibrary
Repetitive
structure

SysML parametrics: formulas expressing physical laws (or CPS ones)

. &L’Zt,a/- MemoCode 2016

AADL

producer consumer example i Instance

producer prs

CONSUMer prs

g OO th_ _____ Application
"""" T datain !
{___dataouth®/ || i __________ J
| 4 T]
producer ram I cunaum&rvrram l Allocation
! 'l
producer cpu consumer cpu

eth

Eth<g<:>[>etn Architecture

User provides allocations
Analysis tools compute end-to-end latency and other performance measurements

. h'zz'a/- MemoCode 2016

Example: Amalthea (Bosch et al)

st P grtitioning AR
e ;‘ « Identification of AMALTHEA

initial tasks

Trace

System Model
Model

& Mapping Codegen

; » Simulation * C-code tasks
* Optimization * OIL file

. 0&2&&/- MemoCode 2016

Example:
Synopsys Platform Architect

srere

i 1

Residual

YUVMB YUVMB

40752 40752 40752

Predicted
YUVMB

!esilnira—

predicted MB

YUV ta ME 172

| YUVIMB
3600

Current Intra Y-
_frame prediction i uantize

115 8462 reconstructed

592
reconstructed
YUVMB

bestinter-

predicied HE . Many other attempts:

reference indices/

mation vectors
Motion estimation/ :

Processing cycles Cnrﬂpensati on Bitstreamframe M etro po I iS

YUVMB

reference MB

29231 VLC/

Data per activation 51 DE v e p:fnzketize Stream It/RaW/T| Iera
rotonvedore. = . SDF3/Aelite
» - !.i;:“’.:'.‘g-.:: =l—m — —— paTs s
SUEEE , — —’ ForsyDE/Nostrum
e R PSP SigmaC/Kalray

. V277 M |/0Code 2016

Lessons

Applications and Architectures should be independently described,
then (only) fitted together :

« an application may be mapped to multiple execution platforms
« a SW/HW platform is versatile and supports many application

At high-level, simple cost function formulas may be in order, at lower-level a more

dynamic simulation relation needed, and if applications have static control the
difference is less

Full control over the (closed) system is assumed. In our case:
High-Performance or Real-Time Embedded Programming (HPeC)

. VO |/ 0Code 2016 - 18

Around Hardware Computer-Aided Design
Sous-titre facultatif

T e

A tradition of models

Programmer View
(SW bit-accurate types)
SystemC

Transaction-Level
e accuratetime
e approximate time

* loosely timed
simulation modes

Cycle-Accurate
(SW bit-accurate types)

VHDL, Verilog

I &L’Zt,a/- MemoCode 2016

An example many-core time-deterministic processor

O xanay - MPPA®-256 Integrated Manycore Processor

Core Cluster ‘ Processor

Bl =)=

ECTT T
=L
. I

i

H
==
=

-
o

-
—

e |1]f

s[s
ajs

o I}
o [on iR clclclcmi
— | I 2 bl 1 T}
==| e e
u“i"" :- :I

i

= b-issue VLIW architecture =16 + 1 cores = 2 NoC to connect clusters and 1/O
= Predictability & energy efficiency = NoC Tx and Rx interfaces = 47MB of on-chip Memory

= FPLU: 32bits / 64 bits IEEE 754 = 2 MBE of shared memory = 4x Quad core SMP on each of the
= MMU for rich OS support four I/O subsystems

<__Execution time predictability >

= “Timing Compositional Core”, no timing anomalies (Wilhelm)
» Cluster configuration where each memory bank accessed by 1 core
= Network calculus applied to the Data NoC to bound transfer latency

. V277 M |/0Code 2016

A large audience example

Knights Landing Overview

2x16 X4
G ‘ R ‘ > g R Chip: 36 Tiles interconnected by 2D Mesh
[Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW
DDR4: 6 channels @ 2400 up to 384GB

10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset

Node: 1-Socket only

Fabric: Omni-Path on-package (not shown)

&30 0
&B2O0

36 Tiles
connected by
2D Mesh
Interconnect

wrErmZ2>»x N
NrFrmMZ2»IxITN

Vector Peak Perf: 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corner
Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+

Scurce Inket ﬂlwdm,mpbq*m;ﬂaﬂ@mwu dimi

Omni-path not shown

. &L’lt,a/- MemoCode 2016

An example Processor for car applications

Built for real-time determinism

Deterministic ARM Fastest interrupt entry

microarchitectu r_‘e - Cortex-R52 = Ix faster than Cortex-R5

* |n order execution and retrial = Interrupt controller

» Superscalar pipeline with integrated within cluster
extensive dual issuing -

ARM CoreSight™ Multicore Debug and Trace

T :"-\.H Generic Interrupt Controlles)
e ‘\\H
T . -H""--_____\- ™~
Deterministic memory B Ral:”d responsivenesg
* Scalable tightly coupled ' LLPP FPU NEOM » |4x faster context switch
memory for fast access ARME-R - R
. ; i CPU than Cortex-R
* Hexible data or instruction ECC MPL % Hard real-time determinism
allocation [~ TEM Port
e §2MPU D Cache | Cache
. AXLM ETM Flash if
Extensibility = |
* Rich set of interface ports _ S Scalability

= Option from | to 4 cores
= Up to 4 cores in lock step

* Dedicated low latency ports
= Wide Flash interface port r

. &Lu'a/- MemoCode 2016

big. LITTLE alternative mappings

Clustered Switching:

A57 High Cluster (High in Perf, Power) of 4 Cores

Either Cortex Cortex Cortex Cortex
-A57 -AS57 -AS57 -AS57

A53 Low Cluster (Low in Perf, Power) of 4 Cores

Dr----‘

t.duration = E E {(t.opp == o) % (t.map == r) xcost(t|[r]|o])
Global Task Scheduling: refec0 T Rockan dectiion varinbles

x| 5 | o e
A15 A15 A15 A15
i i i i b4 4

What form of info does one need to organize scheduling ?
(cf. upcoming talk by Emilien Kofman)

I V277 M |/0Code 2016

Lessons

Big issues in practice are
 Overlapping communications with computations

« Dealing with different (physical) clock speeds
Processor cores run faster than bus/NoC, than external memory

« Dealing with performance and low-power (and temperature)
Different clock domains and power domains dark silicon, DVFS...

Ambition is to make the architectural platform model time-predictable
(as much as possible)

« Either by supposing the real architecture is

« Or by using it in a way that computations and communications fit inside their alloted
processing and interconnect resources
Avoiding cache misses
Avoiding media contention

Requires again static, data-independent control in applications: static planning
Simple relations between dimensions, here again ?

(Hardware Architects use Excel for Timing-Closure)...

. &Ifc’t,a/- MemoCode 2016

Sketch: just enough SoC structure
(to support annotation and build constraints)

Simple metamodel © (vs MARTE ®)

Processor Interconnect Storage

Annotate with
« power & clock domains,

« frequency values,

LLGED! « storage size values,

« WCET,

« WCCT,

e capacity to overlap computation with communication

(DMA and NIC)
I/"m*'f

Around Software Engineering
Programming Models for parallel processing

0&’2&2?/— MemoCode 2016

Parallel Programming Models

OpenMP (shared memory)

1. Annotations to instruct the compiler on potential parallelism(s):

2. Parallel for-loops, regions, synchro barriers (ingredients of static oontrol
programs)

3. With successive versions, always more annotation types (simd, target device)

4. Also more and more ways to inquire the platform about its dimensions and set
up affinities

- ways to instruct “some” mapping “by hand”

OpenCL (data parallelism
1. Programs split as sets of kernels/tasks, to be applied in a data-parallel fashion

2. Same remark as for OpenMP (4) above

MPI (distributed memory task parallelism and streaming)
1. Networks of (parallel) Processes with message-passing
2. Description of interconnect topology for platform (regular graphs)
3. Placement done by compiler (obscure, may use affinity)

In all cases ,generality (no global static control assumption) is desired.
Some mapping (affinity) and scheduling always done, but without any search for
optimality.

No orthogonality (architecture description hinted inside application)

.hu’a,-

OpenMP Multiprocessing

« Originally, annotation pragmas to indicate which for-loops
could be executed in parallel (if distinct iterations data-
independent)

« Supposedl equivalent to sequential form, and shared memory
(unlike MPI)

« |ssue: no real check that pragmas are correct (remember
polyhedral model a few foils ago).

 New in v4: Tasks (so that scheduling is really dynamic); goes
again the idea of planning before-hand (compilation)

« More and more pragmas (simd, target...) are letting the actual
(supposed) architecture crawl into the program description (no
orthogonality) Appli should first be archi agnostic, then only
made archi aware by compilation

. V277 |/c0Code 2016 - 29

Runtime Library Routines for C/C++

Execution environment routines affect and manitar thresds, processors, and the paralliel environment. The library routines sre estemal functions with *C* linkage.

Execution Environment Routines
omp_set_num_threads [2.21] j2.21)
Affiects the number of theeads wied for subsequent

not specifying a nusm_threads clwsse, by
setting the wabee of the firit element of the sthreads-var
IV of the: oament task to oum_Hresds.

wold cenp_set_num_threads{int now_fhreods];

omp_get_num_threads [32.7] [3.2.7)

Betunns the number of threads in the current team. The:
binding region for an omp_get_nwm_threads region is
the innermcst enclasing parallel region.

It cmp_pet_mm_threacsfnid)s

omp_get_max_thresds (123)[3.23)

Eetunns an upper bound on the number of threads that
could B used to form a rew team IF 3 parallel construct
writhiont a mum_threads clause wene encountered after
execution returre from this routine.

[kt ooy _pet_man_threadsivnid);

omp_get_thread_num [3.24] [1.24]
Beturns the theead nember of the calling thread within
the current team.

ot omp_get_thread_mumivoid);

AT _EEL_Riim_procs [12.5] @25
Betunns the number of processors that are awilable o
the dewice at the: time: the routine i called.

it conp_get_meam_procsivaid);

omp_in_parallel (226 (225
Betunns true if the octive-fevels-var 10V is greater than
rero; atherwise it returns false.

= amg_in_paralletiwid);

omp_sel_dynamic [3.27] [3.27]

Erables or disables adjustment of the number af
threasds awailable for the execution of subsequent parallel
reghores by sesting the wakee of the dyn-war 10V

wold conp_set_dysamidint dynomic_fneods);

omp_get_dynamic [3.28) [21.2.5)

This neatine rebarns the value of the dyn-var KV, which
s true if dynamic adsstment of the number of threads is
erabled for the current task.

ok cmp_get_eynamiclynid);

omp_get_cancellation [3.29) 2250
Bietums the walue of the concelwar 10V which i troe IF
cancellation ks activated; othenwise it retunns foke.

omp_set_nested [3.2.10) (3.210
Erables or disabiles nested paralielism, by setting the:
mestwar KW

vold ceng_set_nested|int mested;

afnip_get_mested ([3.231) (3:210)
Aebarns the value of the nest-war ICY, which indicates i
nested parallelism is enabled or disabled.

It omp_get_nested{void);

nm_ﬁ_ﬂuﬂelumuun

the schedule that is applied when muntiee is used
un:f-dthHrthpmthq;Huuhunfhnn-ﬂnd'ﬂ'
[

vold amp_set_scheduleamp_sched_t kiad, int chusk_size];
ki Ona of the following, or an implementation-defined
schedule:
_sched_static =1
omp_sched_dyramic =2
omp_sched_guided =3
_sched_auto =4

amp_get_schedule [3:213) j32.13)
Aebarns the value of ree-sched-var ICV, which i the
schedule applied when runtime schedule is esed.

woid omp_get_schedule|
omp_sched _t *kind, int *chunk_sire];

Sew kind for omp_set_schedule.

omp_get_thread_limit j2.2.19] (2214
Rebearns the value of the thread-imif-war ICY, which is the
maximum number of Openh? threads avallable.

int omp,_get_theead_limis{veid;

ornp_set_man_sctive_levels (3.2 15] [3.2.15]
Limits the amber of nested active paralle] regions, by
seiting mov-achive-levels-var iKW

el amp_set_max_active_levels(int mox_leveli;

omp_get_mes_sctive_levels [3.2.16) [3.2 16]
Reterns the value of mav-active-evels-var 10V, which
determines the maximum number of rested acte

paraliel regians,
Int-omp,_get_max_active_levels{wold);

amp_get_level (3247 [3.217)

For the enclosing device region, returns the kevels-wors
1M, which is the number of rested paralled regions that
enclose the task containing the cll

Int-omp,_get_levelivoid);
amp_get_ancestor_thresd _num [32.18) (32.18)

Rebarns, for a ghven rested level of the carrent thread,
the thread number of the ancestor af the current thread.

It omp_get_ancestor_theead_num(int kevel]:
omp_get_team_size (3.2.19)3.2.19]
Rebarns, for & ghven rested level of the oarment thread,

the size of the thread team fo which the ancestar or the
current theead belongs.

Int-omp,_get_team_size(int level;

ICV:

Internal Control Variables

ormp_get_sctive_level |3.2.20) (3.2.50

Feturns the wvabee of the sctive-level-vars 10V, which
determines the number of active, nested parallel regions
enchoing the task that contains the call.

Int omp_pet_active_levelfvoid);

omp_in_final [1.2.21) (2 2.21)
Beturns true if the routing k executed ina feal task
region; othensise, it rebams folse.

nt omg_in_final{void;

omp_get_proc_bind [3.227] 3233
Betunns the thread affinity policy to be used for the
subiequent nested parallel regions that do mot specify a
proc_bind clause.
wonp_proc,_bind_tomp_get_proc_bind[woidl;
Feturns ore of:
amp_proc_bind_false =0
amp_proc_bind_true =1
omp_proc_bind_master =3
omp_prac_hind_close =3
omp_proc_bind_spread =4

omp_get_ num_places [3.333)
Betunns the number of places awailable bo the execution
environment in the place lst.

Int om_get_num_placesivoid];

ormp_get_place_nim_prods. (3.204)
Beturns the number of processors available ta the
execation erwironment in the specified place.

Int emp_pet_place_num_procsiint ploce_num;

omp_get_place_proc_ids (32.35)
Betunns the numerical identifiers of the processors
availablie to the execution enviFonment in the spedfied

place.
vold omp_pet_place_proc_iids{
It plooe_num, int *ids];

omp_get_place_num [3.2.5)
Sieturns the place nurmber af the place to which the

encountering thread is bound.
int omg_pet_place_numiwoid];

omp_get_partition_mum_places [3.227)
Betunns the number of places in the place partition of the
irnermost implicit task.

Int omp_pet,_partition_num_placesivokd];

omp_get_partition_place_nums |3.2.26]
Betunns the lst of place numbers corresponding to the
places in the place-partition-var ICV of the innermast
imglicit taek.

wold omp_pet_partition_place_nums(int *ploce_nums);

Lartrumd |

OpenCL API Reference

The OpenCL Platform Layer

The OpenCL platform layer implements platform-specific
features that allow applications to query OpenCL
devices, device configuration information, and to create
OpenCL contexts using one or more devices. Items in
blue apply when the appropriate extension is supported.

Querying Platform Info & Devices [4.1-2] [9.16.9]
cl_int clGetPlatformIDs (cl_uint num_entries,
d_platform_id *platforms, d_uint *num_platforms)

cl_int clledGetPlatformIDsKHR (cl_vint num_entries,
o_platform_id * platfoms, cl_uint *num_platforms)

d_int clGetPlatforminfo (cl_platform_id platform,
d_platform_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)
param_nome: CL_PLATFORM_{PROFILE, VERSION},
CL_PLATFORM_{NAME, VENDOR, EXTENSIONS},
CL_PLATFORM_ICD_SUFFIX_KHR [Table 4.1]

cl_int clGetDevicelDs (cl_platform_id platform,
d device_type device_type, cl_uint num_entries,
d device_id *devices, o_uint *hum dewces}
device_type: [Table 4.2]
CL_DEVICE_TYPE_{ACCELERATOR, ALL, CPU},
CL DEVICE TYPE {CUFI'OM DEFAULT, GPU}

cl_int clGetDevicelnfo (c_device_id device,
o_device_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 4.3]
CL_DEVICE_ADDRESS_BITS, CL_DEVICE_AVAILABLE,
CL DEVICE BUILT_IN_| KERNEIS
CL_DEVICE_COMPILER_AVAILABLE,
CL DEVICE {DOUBLE HALF, SINGLE} FP_CONFIG,
CL_DEVICE_ENDIAN_LITTLE, CL_DEVICE_EXTENSIONS,
CL_DEVICE_ERROR_CORRECTION_SUPPORT,
CL DEVICE EXECUTIDN CAPABILITIES
CL_DEVICE_GLOBAL_MEM_CACHE_{SIZE, TYPE},
CL_DEVICE_GLOBAL_MEM_{CACHELINE_SIZE, SIZE},
CL_| DE\FICE GLOBAL VARIABLE PREFERRED, TOTAL . SIZE,
CL_DEVICE_PREFERRED_{PLATFORM, LOCAL,

GLDBAL} ATOMIC_ALIGNMENT,

CL_DEVICE_GLOBAL_VARIABLE_SHARING,
CL_DEVICE_HOST_UNIFIED_MEMORY,
CL DEVICE IMAGE MAX, {ARR}K‘I’ BUFFER}_SIZE,
CL_DEVICE_IMAGE_SUPPORT,
CL DEVICE IMAGEZD MAX {WIDTH HEIGHT},
CL_DEVICE_IMAGE3D_MAX_{WIDTH, HEIGHT, DEPTH},
CL_DEVICE_IMAGE_BASE_ADDRESS. ALIGNMENT,
CL DEVICE IMAGE PITCH ALIGNMENT,
CL_DEVICE_LINKER_AVAILABLE,
CL_DEVICE_LOCAL_MEM {TYPE SIZE},
CL_DEVICE_MAX_| READ IMAGE ARGS,
CL_DEVICE_MAX_WRITE_IMAGE_ARGS,
CL_DEWICE_M. A)(-{CLDCK FREQUENCY, PIPE _ARGS},
CL_DEVICE_MAX_{COMPUTE_UNITS, SAMPLERS]},
CL_DEVICE_MAX_CONSTANT {ARGS, BUFFER_SIZE},
CL_DEVICE_MAX {MEM ALLOC, H\RAMEI’ERT SIZE,
CL_DEVICE_MAX_GLOBAL_VARIABLE_SIZE,
CL_DEVICE_| MA}{ ON_ DEVICE {QUEUES EVENTS],
CL_DEVICE_MAX_WORK_GROUP_SIZE,
CL_DEVICE_MAX_WORK_ITEM_{DIMENSIONS, SIZES},
L DEVICE_MEM BASE_, “ADDR _ALIGN,
CL_DEVICE_NAME,
CL_DEVICE_NATIVE_VECTOR_WIDTH_{CHAR, INT},
CL_DEVICE_NATIVE_VECTOR_WIDTH_{LONG, SHORT},
CL_DEVICE_NATIVE VECTOR_WIDTH_{DOUBLE, HALF},
CL DEVICE NﬂtTIVE VECI'DR WIDTH FLOAT,
CL_DEVICE_{OPENCL_C_VERSION, PARENT DEVICE},
CL_DEVICE_PARTITION_AFFINITY_DOMAIN,

CL DEVICE PARTITION_MAX_: SUB, DEVICES,
CL_DEVICE_PARTITION_{PROPERTIES, T'I’PE}
CL DEVICE_| PIPE MAX_ACTIVE_RESERVATIONS,

CL DE\-"ICE PIPE MI\X PACKEI' SIZE,

CL_DEVICE_{PLATFORM, PRINTF_BUFFER_SIZE},
CL_DEVICE_PREFERRED VECTOR_WIDTH_{CHAR, INT},

CL DE\.I'ICE PREFERRED VECI'OR WIDTH_DOUBLE,
cL| DE\"ICE_PREFERRED VECI'OR WIDTH HALF,
CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG,
CL_DEVICE_PREFERRED ! VECI'OR WIDTH SHORT

CL_DEVICE_PREFERRED ' VECI'OR WIDTH FLOAT,
CL_DEVICE_PREFERRED INTERDP USER_. SYNC
CL_DEVICE_PROFILE,
CL_DEVICE_PROFILING_TIMER_RESOLUTION,
CL_DEVICE_SPIR \.I'ERSIONS

CL_DEVICE QUELIE_DN_DEVICE PROPERTIES,
CL_DEVICE_QUEUE_ON_HOST_PROPERTIES,
CL_DEVICE_QUEUE_ON_DEVICE_MAX_SIZE,
CL_DEVICE_QUEUE_ON_DEVICE | PREFERRED, SIZE,
CL_DEVICE {REFERENCE COUNT, VENDOR IIﬂ
CL_DEVICE_SVM I.'APABILI'I'IES

CL_DEVICE TERMINATE CAPABILIT‘I’ KHR,
CL_DEVICE {TYF'E UENDOR}

CL {DE\.I'ICE DRIVER}_VERSION

Partitioning a Device [4.3]

cl_int clCreateSubDevices (cl_device_id in_device,
:nnst:l device_partitio de%:cpem ‘properﬁes
cl_uint Aum _devices, cl ce_id *out_devices,
:I umt‘num devices rerJ

properties: CL_DEVICE_PARTITION_EQUUALLY,
CL_DEVICE_PARTITION_BY_COUNTS,
CL_DEVICE_PARTITION_BY AFFINITY DOMAIN

cl_int clRetainDevice (cl_device_id device)
cl_int clReleaseDevice (cl_device_id device)

y and explicit data transfer for GPU

verfeed the processing elements, and
1ave arrived (finger-crossed)

Contexts [4.4]
cl_context clCreateContext |
const cl_context_properties *properties,
:I uint num_devices, const cl_device_id *devices,
wvoid (CL_C K*ofn_notify)
(const char *errinfo, const void *private_info,
size_t ch, void *user_data),
woid ‘u:er dum cl_int ‘errrade ret)

~

: >omputation and communication
The OpenCL Runtime

AP| calls that manage OpenCL objects such as
command-queues, memory objects, program objects,
kernel objects for __kernel functions in a program
and calls that allow you to enqueue commands to a
command-queue such as executing a kernel, reading,
or writing a memory object.

Command Queues [5.1]
cl_command_gueue
clCreateCommandQueueWith rties |
cl_context context, cl_device_id device,
const ¢l_command_queue_properties * properties,
cl_int *errcode_ret)
properties: [Table 5.1] CL_QUEUE_SIZE,
CL_QUEUE_PROPERTIES {hitﬁeld which may be
set to an OR of CL_QUEUE_* where * may
be: OUT_OF_ORDER_EXEC_MODE_ENABLE,
PROFILING_ENABLE, ON DE\.I'ICE[_DEFAUL‘I’]}

cl_int clRetainCommandQueue (
“¢l_command_gueue command_gueue)

cl_int clReleaseCommandQueue |

cl_command_queue command_queue)

cl_int clGetCommandQueueinfo
cl_command_queue command_gueue,
cl_command_queue_info param_name,
size_t param_value_size, void *param_value,
size_t *poram_value_size_ret)

param_narne: [Table 5.2] CL_QUEUE_CONTEXT,

CL_QUEUE_DEVICE, CL_QUEUE_SIZE,

CL_QUEUE_REFERENCE_COUNT,

CL_QUEUE_PROPERTIES

Message-Passing Interface (MPI)

« Highly used for High-Performance Computing (grids, clusters)

* Mostly message-passing and synchronization primitives, to be
applied with any general-purpose sequential language (in fact
Fortran or C++ generally)

« Point-to-point or collective (broadcast, all-to-all) communications

* Means to describe virtual network topology as graph

* Big issue is to assign processes to processors (statically?), and to
map the virtual communication onto the real interconnect
infrastructures

* Both prominent frameworks (OpenMPI and MPICH) have fancy
dedicated library, commercial offers are made by specific hardware
vendors

* Mapping done at runtime, but what about static control processes
and static mapping at compile time ?

. V277 |/c0Code 2016 .32

«Communicators with Topology MPI quick card (excerpt)
Create with cartesian topology. (§ 6.5.1)

sint MPI_Cart_create (MPI_Comm comm_old,

*int ndims, int *dims, int *periods, int

sreorder, MPI_Comm *comm_cart)

*Suggest balanced dimension ranges. (§ 6.5.2)

«int MPI_Dims_create (int nnodes, int

*ndims, int *dims)

*Determine rank from cartesian coordinates. (§ 6.5.4)
sint MPI_Cart_rank (MPI_Comm comm, int

**coords, int *rank)

*Determine cartesian coordinates from rank. (§ 6.5.4)
sint MPI_Cart_coords (MPI_Comm comm, int

srank, int maxdims, int *coords)

*Determine ranks for cartesian shift. (§ 6.5.5)

sint MPI_Cart_shift (MPI_Comm comm, int

«direction, int disp, int *rank_source,

*int *rank_dest)

*Split into lower dimensional sub-grids. (§ 6.5.6)
sint MPI_Cart_sub (MPI_Comm comm, int
**remain_dims, MPl_Comm *newcomm)

*Related Functions: MPI_Graph_create, MPI_Topo_test,
*MPI1_Graphdims_get, MPI_Graph_get,
*MPI1_Cartdim_get, MPI_Cart_get,
*MPI1_Graph_neighbors_count, MPI_Graph_neighbors,
*MPI1_Cart_map, MPI_Graph_map

. V277 |/c0Code 2016

Compilation and Runtime Execution

« HPC Runtime: StarPU, XKaapi, RMC

« Parallel compilation & Polyhedral model : ClooG, Graphite, R-Stream
« (often produces OpenMP-ish code)

These always operate by trying to exhibit maximal paralleism on the
application side (and the kind of parallelism wanted first), then try to adjust it
dynamically to a “phntom” architecture only reflected by a few features showing
avaibility of simple resources

Can we do better with a real architecture model?
(Of course static control restrictions for compile-time decisions)

. V277 |/c0Code 2016 34

Data/Task parallel levels:
Nested For-Loop programs with affine bounds

Both code and model:

« Strict separation between indexes and other variables
(only indexes impact control)

* Other variables are array locations
(referenced by affine expressions of indexes)

May produce explicit control/data flowgraphs to extracy potential parallelism
(from dependences between operations)

« Extended: precise but untractable

 Reduced: quality of solution depends on information preserved
1 Dependence levels (Allen-Kennedy)
1 Direction vectors (Lamport, Wolf & Lam)
1 Polyhedral models (Feautrier)

In all 3 cases, solutions found are expressed by regular (affine)

scheduling relations between operations : logical clocks !

. V277 |/c0Code 2016 .35

Silly simple example

forj=1to N
fori=1toN
a(i+1,j+1)=a(i, j+1) + a(i+1,))
end
end
ia NV forj=2to 2N
A J parfor i’ = max(1,/’-N) to min(N,j’-1)
a(i,j-i")=a(’-1, j-i') + a(i’,j-i’-1)
‘ end
2 \ end
B step(a(i,))= i+}-1
dependences

. V277 |/c0Code 2016 -36

Task streaming, Tiling
software pipelining

@sequencial

q}
4 o

Task parallelism

or @
Data parallelism I E E E :

*Change the granularity
»...to adjust it to match the size of a single Processing Element
Locality and shared memory space makes performance highly predictable

. V277 |/c0Code 2016

Typical (and useful) library kernels

* Linear algebra: LinPack ScalaPack (Blast),...
 Convolutions Fast Fourier Transform: FFTW, Spiral
 Neural Networks (only execution, not training part): a mix of both

« Signal Processing (filters) : Halide
« Stencil algorithms for numerical analysis ./ scientific computations

This type of effort lead to Domain-Specific Languages

Restricted expressivity: linear or DAG fillter streams

Transformations to exhibit some form of parallelism (data or vectorize)
Scheduling often not fully automatic, or obtained by progressive selection
(Dynamic Programming, Auto-tuning, or “Auto-Scheduler”...)

...although algorithm stream definitions are often recursive in terms of the
data (multi-array) size, so that with a simple core architecture target model
it is easy to compute which size fits in (and then loop sequentially to get

results). (Application ground floor resembles architecture groundfloor)
.&sza/- MemoCode 2016 -38

[0
x[8]
x[4]
x[12]

Radix4

x[2]
xf10]

L

]

Fast Fourier Transform

W3

|

x[6]

a[14]

N

T

x[1]
X9
x[5]
13
x[3]
x[11]
x[7]
[15]

IIIIIIIIllliIlII

Can easily be decomposed (recursively up to intermediate permutations) along

sizes 2N

Radix8

|

Wis

Wis

Wfb

Wrﬁ

1T

Given atarget processing core (or thread):
« its local register count 2R
« its local memory 2V
* its number of vectorized (simd) or parallel (GPU) ALUs 2¢

one can compute by proportions a pattern adjusting the available parallelism (and

)/, \/\.0Code 2016

X[
X[
X[2]
X[3]
X141
X[5]
X[6]
XI7]
X[8]
X19]
X[10]
X[11)
X[12)
X[13]
X[14]
X[15)

Convolutional Neural Networks

Inpuc layer {31) 4 feature maps

I 1 {Cl1) 4 fearure maps (52) 6 feature maps {C2) & feature maps

convolution layer sub=samplin, r convalution layer sub-samplin r lly connecred
I luticm | | besampling laye I aye | besampling laye Iful}r MLPI

source: http://deeplearning.net/tutorial/lenet.html

Task streamin for layers
+ potential data parallelism according to locality and tile overlap

. &Ifc’t,a/- MemoCode 2016

Dream...

When

Application restricted to simple filter DAG/pipeline kernel
Data value organization well understoood (and statically known)

Simple processor targeted (single core, processing element, or thread)
Shared memory, low-cost communication (data transfer)

Mutual correspondance of sizing between appli and archi, and simple
cost function formulas,

Then the ground floor mapping of library kernels to core should deliver
time-predictable results (WCET)

Then one could consider optimizing full (static control) applications on
full platform, designing time-predicatble communication pattterns.

. V277 |/c0Code 2016

ConvNets on Kalray MPPA

Ethernet] [Scheduler] [DDR

\
I
|
fc7 bE [40GbE J !
I
————————————————————————————— i pr— |
1 I I
fCO —m | !) E o| |
I | fcT : w 2]
)
I I S :
I Wi %—’ I
convs RS p - 3 L G
I |o 844" [1 !
| ! | conus fc6 fc7 fc7 L Y |
" & — |
conv4 i I | I
I N > “) | A t# :
: : convd convad conv3 conv3 : 'g g I
! | . .J \, AN J N] | = E‘ !
conv3) |2 &
=TT : A
HH R 1 convlJ lcnnvl conv2 | Tonv2 I :
I =11 I
conv2 HES RS d P
I ! A ’
P ey L -
I A
I
convl : Ethernet Scheduler I
S ! 4x10GbE | 40GbE 4-cores :
i

source: B. Ganne (Kalray) , Machine Learning on Multicores, NeuroStic Days 2015 (in French)

. &L’(Z&Ia/— MemoCode 2016

FFT on Intel Haswell
(Mohamed Bergach PhD thesis)

SIMD CPU cores (4 cores)
« each core enough L1/register memory to execute 4 stages at once

2 256-bit SIMD ALUs, 16 256-bit registers, 128 floating-point numbers
 FFT 1064 (radix 10, 10 stages) performed as iteration 4+4+2
* In C++ with simd intrinsics
GPU Processing Elements (40)
« each PE enough L1/register memory to execute 3 stages at one

2 128-bit ALUs, 2K bit reqisters, 64 floating-point numbers

 FFT 1024 executed as iteration 3+3+3+2
* in OpenCL

To force allocation one needs affinity (dismiss hyperthreading etc), currently not
obvious

In the end one gets a libray of mapped functions with reasonably accurate cost, to
be used by upper floor analyses

. &L’l&la/- MemoCode 2016

Concurrent Models of Computation

and Communication
Process Networks, Scheduling and Routing

0&’2&2?/— MemoCode 2016

SDF (synchronous data-flow process networks)

« Weighted Marked Graphs (conflict-free
subset of Petri Nets)

« Distinct issues for acyclic graphs and
strongly connected components

« First-level self-timed semantics

« Second stage: optimal scheduling exist,
assuming no parallelism limitations

« Static schedules lead to regular form (the
binary word of activations of any node is of
specific form

« all nodes adopt the same rate

. V277 |/c0Code 2016

l 00011
01100

11000

4———

Reqgular schedules in SDF

The noticeable thing here:
« (static) schedules can be represented as regular
infinite binary words
u.(v) , uinitial, v repeated
where
1 1 at location n means active at step n
1 0 atlocation n means idle at step n

While very primitive, it corresponds to the way ASAP schedule assignment goes
Later it can be turned into Gantt Charts, when sequences get long

No architectural resource constraints considered here: ideal parallelism

. V277 |/c0Code 2016

Reqgular schedules in SDF

l Now what if we map (here superpose) to an

execution platform ?

* Cost of communication is no longer uniform
(nuMA)

« Computations or communications sharing a
single resource may need to be serialized
(multitasking)

But the principles of asap scheduling stays the

same !
Even more constraints may be applied and task

fission/fusion also...

To what extent can we represent in this
abstract setting the phenomena encountered

“ |
earlier ?
I/m»

Adding predictable deterministic control to SDF

« add a switch node), but with internal switching condition (as in Kahn
Process Networks - functional determinism, latency-insensitive design

« done in Cyclo-Static Data-Flow and Streamlt graphs (but without
initialization patterns

* Our own view: add regular switching/routing patterns in the same
flavor as schedule words activating conditions

- KRG process network model

« Study (equational, algebraic) graph transformations that preserve
functionality (self-timed)

* these transformations made to change the buffer/data dependencies to
adjust to a given platform communication topology graph (eg, NoC)

. V277 |/c0Code 2016 .50

vi

MatrixBlockMultiply

N

{ roundrobin(1443108f§

blo

roundrobln(l,l,l,1,1,1,1,1,1)

transpos

bebhbbous

ORI 9IS 1S, roundrobin(12,12,12,12,12,12,12,12

duplicate

\ blockSplit

)

E
E

\roundrobin(lZ,lZ,lg’

)

7

duplicate W

\roundrobln(16 12)

i \ roundrobin(108,108,10:
)

bloc

kComblneSF:?

roundrobln 16,16,1

.&Lu'a/-

StreamlIt example

roundrobin branch dispatcher and
duplicate parallel output
confused as “splitters” (unfortunate?)

Q.

patternl

pattern

‘ drawn from William Thies PhD dissertation (MIT, 2009)

MemoCode 2016

Silly little KRG example

2 4
(0011) O11) splidemux/map node

merge/mux/reduce node

(0011) (0111)

. V277 |/c0Code 2016

Transitivity of Selects

000001
conb

: 000

bwhenbonc

on/when operators

(O.u)onv=0.(uonv)
(1.u) on x.v = x.(u on v)

(x.u) when (0.v) =uwhen v
(x.u) when (1.v) = x. (uwhen v)

on effects

(O.u)onv=0.(uonv)
(1.u) on x.v =X.(u on v)

u.. =001 ug,=01001

— e —

00 0200310100 1

u

1 o) 1 1 o)

uonv rF--+——+-4+—1%+14+""4+"""""—""+—+——
o 601 0 00 O 1 O0O1O0O0TDO

I"'mbf—

when effects

most meaningful whenever (x.u) when (0.v) =uwhen v
u subclock of v (x.u) when (1.v) = x. (uwhen v)
u..=001 u.,=01001

init — stat

']

—\—

vV —t—_—t——_t—t—t—t—t—t—t—t—t— -
O 03 013 0 013 0 ¥ 0O O 1
u — ..
X x 1 x 0 x x |1 x |1 x x |0
uwhenV ey

Transitivity of Merges

Wo | Wy | W2 Wo| W1 W
0 0]

b cwhenconb

P

C bonc

W W

(b) (@)

Selects up across Merges

Sharing vs disorder

Normal forms (point-to-point links)

-m
. &L’Zéta/- ComRed meeting 19/11/2016 60

Lessons

Regular scheduling arises naturally as solution space for optimal results

 Classical scheduling of Process Networks
 Scheduling of nested For-loops programs wth affine bounds

Regular switching patterns can match the expressive level of description
* represent the transformations in data transfer/communication pattern
« play with the boundaries between data- and task- parallelism

Task streaming level: Scheduling Theory

Original problem is to schedule independant tasks with hard deadline

requirements on a mono- or multi-processor

» static scheduling of periodic tasks: Rate-Monotonic Analysis, Deadline-
Monotonic

» dynamic schedling of periodic/sporadic preemptible tasks: Earliest-deadline-
first, least-laxity first,...

Simplified assmptions lead to positive methods/results

Then accounting for communications, context-switches in preemption, and further
Issues make life harder (and literature bigger)

First step is to specify in clear mathematical formulas what are the real-time
constraints

. V277 |/c0Code 2016 - 62

A Clock Constraint Specification Language
Declarative specifications for the top floor

P e

Multiform Logical Time

Main idea is simple:
every (pure) event that occurs repeatedly can be used as a logical clock

logical clock = sequence/flow of ticks/signals = activation condition

examples:

* (physical) clock cycles in a modern embedded processor

e ignition in a car (4 times each turn of engine, no matter the speed)

« sensor event detection (such as infra-red cells, gesture detection, lidars,..)

* by the way, regular clockwatch physical time can also be considered logical...

We claim Multiform Logical Time is natural and invaluable at design/specification time
« Expanding multiform logical time to uniform physical time depends on implementation conditions

.hu’a/-

Clock Constraint Specification Language) CCSL

Meant to express constraints and properties in (multiform) logical time
Targets the platform-based design/AAA framework

Inspired from Synchronous (actually polychronous) languages
Inspired from Classical and Real-Time Scheduling notions.

Not usually stand-alone (extracts the ordering relations between events
whose meaning is part of a larger specification)
Formal syntax to reason about logical time relations (including

simultaneity)
Concerns for expressivity and decidability

Two natural partial orders

a subclock b (a < b) a faster than b (a < b)

inspired from real-time scheduling
inspired from Timed Automata

* inspired from synchronous
(polychronous) languages

* inpired from shapes of regular static
scheduling / parallel allocation

» inspired from hardware and system

design

used either in an imperative or declarative fashion
each tractable individually, but only the combination truly expressive
... and problematic

. V277 M |/0Code 2016 NG

Brief recap on Synchronous languages 1. Signal /Lustre

x = fct(y,z) Cy=cz Cc=cCy

X =1nit -> pre(y) C_X:=C.y

x =y default z C_X=cCc_yunionc_z

X =y when z (z:Boolean flow) c =c_zfiltered by ?z (?z Boolean sequence)

c=whenz x=y @c c_X=c_yinterc
C_X=cC_y

C X#C.Y

/\X#/\y

Logical clocks not syntactic elements in Lustre, no totally first-class in Signal,
explicit activation condition in Scade

I"'m’“’—

Brief recap on Synchronous languages 2. Esterel

pause (next instant) start P when S
PQ abort P when S
IFc))cl)poP end stop P when S
present S then P else Q suspend P when S
if ?S then P else Q activate P when S
emit S

signal S in P end
+ sequential computations on data variables

Signals are first-class citizen logical clocks
They represent shared variables with precise constructive consensus
semantics

An example program

loop
await A;
await immediate B . Logical clocks are the event-driven
emit C(A?) control structures (with registers that are
end latching instants)
« new clocks from old clock (only
present-else case is problem, but
B/J AAB / C(?A) usually triggered by some previous
clock/register)
Al D B/ C(?A) « Simple Mealy machine interpretation

for each construct
« “Sensible” clocks should tick infinitely

often
C= A sampledOn B

. V277 M |/0Code 2016 - 69

(weak)every B A second example

do (weak)abort

await B; emit Err -« constraints seen as Observers
when n*A « Assume/Guarantee
done

end

B SporadicOn A

. V277 M |/0Code 2016 ™

CCSL in a foil

a, b, c .. clocks, w mask (infinite regular binary word)

expressions relations/constraints
aunionb only way to « speed up » rate (more ticks) a=b

ainter b (less ticks, may become finite) a¥b

aminus b (less ticks, may become finite) asb

fastest(a,b) minof timings a<b

slowest(a,b) max of timings a#b

sync(@,b) when timings match a AlternatesWith b

a filteredBy w subsampling, solution-oriented (k-periodic, regular)

a sampledOn b sporadic sampling

Results (extracts)

Each individual constructs translates into a:
transition-labelled extended Buchi Mealy transition systems.

Not always Finite-State machine, also integer counters
(cf fastest(C,D),orC<D)

Full system is a parallel product of such t-E Bichi Mealy machines

Too Expressive (can encode Petri Nets with inhibitor arcs, and similar
arguments as classical 2 counter machines) - Turing-Complete

But many sources of sensible restrictions ensuring decidability

. V277 M |/0Code 2016 - 72

Encoding asynchronous Petri Nets

Clocks

o t_p,p_t foreacht, p connected
o tforeacht (firing the transition)
o p_in and p_out for put/get token to/from that place

t =inter(p_t, p inef) ninter(t_p, pin te)

t1#t2 ... #tn
(transition are exclusive in time, not to mix tokens)

p_in =union(t_p, pin et)
p_out =union(p_t, pinte)

(p_out shiftedBy init_Tok_p) 2 p_in
(tokens consumed only after being produced)

Note: in general Petri Nets, weights can be replaced by multiple places)

. &Ifc’t,a/- MemoCode 2016

Encoding PN inhibitor arcs

t =inter(p_t, p inef) ninter(t_p, p in te)

t1#t2 ... #tn
(transition are exclusive in time, not to mix tokens)

p_in =union(t_p, p in ef)

p_out =union(p_t, pin te)

(p_out shiftedBy init_Tok_p) 2 p_in
p_in#p out

void g = fastest((q _out shiftedBy init_Tok q),q_in)inter g _out
ticks when place becomes empty
unvoid g =void_g SampledBy g _in
ticks when place becomes occupied
t SampledOn (void g union unvoid) =t SampledOn unvoid g
void alternates with unvoid, these main equation states that t occurs after the void

Schedulability issue: simplest example

« Bc A Afiltered by (01) = B filtered by (01)

Here in fact B=A, since all even occurrences must coincide (while odd
occurrences seem free), B can never catch up with any delay.

But it may be noticed too late in plain simulation (without backtracking)

Many tractable subsets

If the clock dependency is a forest (no reconvergence)

If it is a DAG but without synchronizing operators (inter,..)
In the middle

More to be defined

. V277 M |/0Code 2016 - 76

o

Conclusions

R e

. V277 |/c0Code 2016

Thank you

www.inria.fr

o

Platform-Based Design and Y-Chart
methodology

Sous-titre facultatif

T e

I V)7, | /cnoCode 2016

